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Abstract

Neural networks are an artificial intelligence method for modelling complex tar-

get functions. During the last decade they have been widely applied to the

domain of financial time series prediction and their importance in this field is

growing. The present work aims at serving as an introduction to the domain of

financial time series prediction, emphasizing the issues particularly important

with respect to the neural network approach to this task. The work concludes

with a discussion of current research topics related to neural networks in finan-

cial time series prediction.
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Chapter 1

Financial time series

1.1 Properties of financial time series

The domain of financial time series prediction is a highly complicated task due

to following reasons

1. Financial time series often behave nearly like a random-walk process, ren-

dering (from a theoretical point of view) the prediction impossible (Hell-

ström and Holmström [1998]). The predictability of most common finan-

cial time series (stock prices, levels of indices) is a controversial issue and

has been questioned in scope of the efficient market hypothesis (EMH).

2. Financial time series are subject to regime shifting, i.e. statistical proper-

ties of the time series are different at different points in time (the process

is time-varying, Hellström and Holmström [1998]).

3. Financial time series are usually very noisy, i.e. there is a large amount

of random (unpredictable) day-to-day variations (Magdon-Ismail et al.

[1998]).

4. In the long run, a new prediction technique becomes a part of the process

to be predicted, i.e. it influences the process to be predicted (Hellström

and Holmström [1998]).

13
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The first point (predictability issue of financial time series) is discussed below

in section 1.2.

The second property of financial time series will be illustrated using the volatil-

Figure 1.1: Daily volatility of the Dow Jones index from December 3, 1962 to

December 31, 1986

ity time series of the Dow Jones index. Consider figure 1.1. It shows the daily

volatility of Dow Jones index from 1962 to 1986. The volatility (standard de-

viation) is an important parameter of a probabilistic distribution. As can be

seen from this figure, it changes greatly through time. There are periods, where

the index values fluctuates greatly on a single day, and more calm periods. An

extreme example is given in figure 1.2, showing the volatility around and on

”black monday” (October 19, 1987) stock market crash. And, of course, finan-

cial time series are influenced by business cycle.

The third property stems from the fact that financial time series are influenced

by events occurring on a certain day (Fair [2000], Donders and Vorst [1996],

Fair [2001], Eddelbüttel and McCurdy [1998]). In particular, it was discovered

that the volatility of stocks increases before announcement of firm specific news

(Donders and Vorst [1996]). As shown in figure 1.3, the volatility of stock prices
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Figure 1.2: Daily volatility of the Dow Jones index from January 2, 1987 to

June 6, 1988

increases as the announcement day (the date of announcement is known in ad-

vance, but not its content) approaches and decreases sharply after the event (in

this case the event is the announcement of firm specific news). In Fair [2000],

various types of events are found, whose occurrence coincides with significant

changes in S&P 500 index. Such events are fiscal measures (e.g. interest rate

changes), employment reports, announcements of macroeconomic news as well

as political events. In Fair [2001], the impact of events on stock, bond and

exchange rate future prices is examined and again, there are many events that

correspond to significant price changes. The events are random and unpre-

dictable and contribute to the noise in the time series.

The noisy nature of financial time series makes it difficult to distinguish a good

prediction algorithm from a bad one, since even a random predictor can produce

good results (Hellström and Holmström [1998]).

The fourth point will be explained using a thought experiment. Imagine a

novel prediction technique is invented, which outperforms all other prediction

techniques available. As long as this new technique is used by few market par-
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Figure 1.3: Average volatility of stock prices around days on which firm specific

news are announced (Donders and Vorst [1996]).

ticipants, its possessors will be able to make extraordinary profits, since they

have a more powerful weapon in their prediction techniques arsenal than their

competitors. By passage of time, this new technique will become more and

more popular among market participants and yielding less and less profit. If

everybody employs it, the advantages of the new technique (at least in terms

of profit) will vanish. The monopoly on ”skill” (better prediction ability) will

cease to exist. This argument is stated in Hellström and Holmström [1998] and

Swingler [1994]. According to Beltratti [2002], this hypothesis is supported by

empirical (simulation-based) results.

1.2 Efficient Market Hypothesis

The efficient market hypothesis was developed in 1965 by Fama (Fama [1965],

Fama [1970]) and has found broad acceptance (Anthony and Biggs [1995],
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Malkiel [1987], Tsibouris and Zeidenberg [1995], White [1988], Lowe and Webb

[1991]) in the scientific community (Lawrence et al. [1996]).

The efficient market hypothesis states that the current market price reflects

the assimilation of all the information available. This means that given the

information, no prediction of future changes in the price can be made. As new

information enters the system the unbalanced state is immediately discovered

and quickly eliminated by a correct change in market price. Depending on the

type of information considered, there exist three forms of EMH (Hellström and

Holmström [1998]):

The weak form Only past price data is considered. This kind of EMH rules

out any form of predictions based on the price data only, since the prices

follow a random walk in which successive changes have zero correlation

(Hellström and Holmström [1998]).

The semistrong form All publicly available information is considered. This

includes additional trading information such as volume data (e.g. number

of traded stocks) and fundamental data such as profit prognoses and sales

forecasts (Hellström and Holmström [1998]).

The strong form All information, publicly as well as privately available is

considered (Hellström and Holmström [1998]).

In recent years, the EMH became a controversial issue due to many reasons.

On one side, it was shown in some studies that excess profits can be achieved

using only past price data (e.g. Tino et al. [2000]), on the other side it is very

difficult to test the strong form due to lack of data.

Another reasonable argument against the EMH deals with the different time per-

spectives different traders have when they do business. For example, a majority

stock owner will react quite differently than a floor trader when a stock suddenly

drops in value. These differences in time perspectives will cause anomalies in

the market prices even if no new information has entered the scene. It may be

possible to identify these situations and actually predict future changes (Hell-

ström and Holmström [1998]).
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26 years after the publication of EMH, Fama revised his view concerning market

efficiency and wrote (Fama [1991])

”I take the market efficiency hypothesis to be the simple state-

ment that security prices fully reflect all available information. A

precondition for this strong version of the hypothesis is that infor-

mation and trading costs, the costs of getting prices to reflect in-

formation, are always 0. . . A weaker and economically more sensible

version of the efficiency hypothesis says that prices reflect informa-

tion to the point where the marginal benefits of acting on information

(the profits to be made) do not exceed the marginal costs. . .

Since there are surely positive information and trading costs, the

extreme version of the market efficiency hypothesis is surely false.”

Even though the strong form of EMH is said to be false by its developer, this

issue remains an interesting research area.

Most often, the arguments in favour of EMH rely on statistical tests showing no

predictive power in the tested models and technical indicators. Most arguments

against the EMH refer to a time delay between the point when new information

enters the system and the point when the information has been assimilated

globally and a new equilibrium with a new market price has been reached.

Viewed this way, the controversy is only a matter of how the word immediately

in the EMH definition should be interpreted. It may just be the case that traders

in general simply are faster than academics (Hellström and Holmström [1998]).

1.3 Data used for financial time series predic-

tion

There are several different types of data which can be assigned to following

categories:

Technical data This includes such figures as past stock prices, volume, volatil-

ity etc. Actually, the term financial time series usually refers to time series
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of technical data (Hellström and Holmström [1998]).

Fundamental data These are data describing current economic activity of the

company or companies whose stock prices are to be predicted. Further,

fundamental data include information about current market situation as

well as macroeconomic parameters (unemployment rate, inflation; Hell-

ström and Holmström [1998]).

The last type of the data, derived entities, are produced by transforming and

combining technical and/or fundamental data (Hellström and Holmström [1998]).

1.3.1 Technical data

Typical technical data involved in financial time series prediction are

• Close value (price of the last performed trade during the day)

• Highest traded price during the day

• Lowest traded price during the day

• Volume (total number of traded stock during the day)

While in most cases, daily data is used for modelling stock price behaviour,

data for each individual trade during the day is sometimes available as well.

Such data is most often used not for modelling the market, but for determining

the right time of an intended trade in real trading (Hellström and Holmström

[1998]).

The most obvious choice of entity to predict is the time series of the close values.

This approach has some drawbacks, among them (Hellström and Holmström

[1998]):

1. The close prices normally vary greatly and make it difficult to create a

model for a longer period of time (Hellström and Holmström [1998]).

2. The close prices for different stocks may easily differ over several decades

and therefore can not be used as the same type of input in a model (Hell-

ström and Holmström [1998]).
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Instead of modelling close prices, returns are the data type of choice in most

cases (see section 1.3.3).

1.3.2 Fundamental data

Analysis of company’s value is usually done by professional market analysts on

a regular basis. Their analyses provide a basis for evaluating the true value

of company’s stock. Fundamental analysts take into consideration following

factors (Hellström and Holmström [1998]):

1. The general state of economy measured by inflation, interest rate, trade

balance etc.

2. The condition of the industry, to which the company belongs measured

by

• Stock price indices (Dow Jones, DAX, FTSE 100, S&P 500 etc)

• Prices of related commodities such as oil, different metals and cur-

rencies.

• The value of competitors’ stocks

3. The condition of the company measured by

• P/E (price/earnings) ratio (stock price divided by the earning per

share during the last 12 months)

• book value per share (net assets (assets minus liabilities) divided by

the total number of shares)

• Net profit margin (net income divided by total sales)

• Debt ratio (liabilities divided by total assets)

• Prognoses of future profits

• Prognoses of future sales
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1.3.3 Derived entities

Returns

The one-step returns R(t) is defined as the relative increase in price since the

previous point in the time series y:

R(t) =
y(t)− y(t− 1)

y(t− 1)
(1.1)

The log-return is defined as

R(t) = log
y(t)

y(t− 1)
(1.2)

One-step and log returns are very similar for small changes and are very often

Figure 1.4: Annual values of S&P 500 index (1871 to 1997)

used for financial time series prediction (Hellström and Holmström [1998]) for

following reasons:

1. R(t) has a relatively constant range even if data for many years are used as

input. The ”raw” prices y vary much more and make it difficult to create a

valid model for a longer period of time (Hellström and Holmström [1998]).

Consider the figures 1.4 and 1.5. They show the values of S&P 100 index
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Figure 1.5: Annual S&P 500 real returns (1872 to 1995)

in ”raw” form and as returns. The prices (figure 1.4) in the nineteenth

century part of the graph are on a completely different scale than those

at the end of the twentieth. Returns (figure 1.5) also vary greatly, but

they do so within approximately the same boundaries, they remain on the

same scale.

2. R(t) for different stocks may also be compared on an equal basis (Hellström

and Holmström [1998]).

3. It is easy to evaluate a prediction algorithm for R(t) by computing the

prediction accuracy of the sign of R(t). An accuracy above 50 % (more

precisely above the mean) indicates that a true prediction has taken place

(Hellström and Holmström [1998]).

Volatility

Volatility is the synonym for standard deviation of some value (e.g. stock price).

Volatility is a measure for risk, but also for profit possibilities. In so-called delta-



CHAPTER 1. FINANCIAL TIME SERIES 23

neutral trading strategies (for option contracts1), the profit/loss of a trading

operation depends not on the price, but on the volatility of the underlying

stock price (Tompkins [1994]). Thus, volatility is not only a measure of the

risk, but also a tradeable ”commodity”.

On the other side, it is empirically known that volatility and predictability of

financial time series are connected (Siriopoulos et al. [1996]).

Volume

The increase of traded volume is often viewed as an indication of new infor-

mation reaching the market. Therefore it may be useful to include the rate of

change of volume as an additional input variable (Hellström and Holmström

[1998]).

Turning points

Turning points in a stock price chart can be viewed as positions where equilib-

rium between demand and supply has been reached. Therefore, they may be

viewed as more significant than the data in between, which could be regarded

as noise in this context (Hellström and Holmström [1998]).

Technical indicators

Technical stock analysis deals extensively with derived entities. For a thorough

description of the most common technical indicators, see Holmström [1997].

Some examples are (Hellström and Holmström [1998]):

• Relative Strength Index (RSI). The relation between the average upward

and downward price changes within a time window of fixed length. The

window is normally 14 days backwards (Hellström and Holmström [1998]).

• Moving average (MA). A price rise above a moving average is interpreted

as a buy signal, and a fall below it is interpreted as a sell signal (Hellström

and Holmström [1998]).
1Option contracts give the holder the right, but not the obligation to buy or to sell another

stock or commodity (the ”underlying” stock) in future at a price fixed at contract signing.
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• Moving average convergence divergence (MACD). Two moving averages

with different backward windows are used. The difference between the

moving averages are also smoothed. Buy and sell signals are generated

from the crossings and trends of these filtered price signals (Hellström and

Holmström [1998]).

• Relative strength (RS). The concept of relative strength trading involves

selecting stocks for trading by their performance compared to the general

market, represented by some relevant index (Hellström and Holmström

[1998]).

Other data

Sometimes, other types of data are also used for financial time series prediction,

such as artificial data and relative stock performance. Interested reader should

refer to Hellström and Holmström [1998].

1.4 Classical methods for financial time series

processing

Traditional methods of financial time series include following models:

• Mean model

ŷt = µy

i.e. the predicted value equals to the sample mean of the time series (Nau

[2000]).

• Linear trend model

ŷt = α + βṫ

is equivalent to fitting a line to a series of observations such that the

residuals are minimized (Nau [2000]).

• Random walk model

ŷt = yt−1 + α
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(the estimated value is equivalent to the previous value plus a random dif-

ference α) is applicable for time series which aren’t stationary, but whose

first differences are.

• Geometric random walk model

log(yt) = log(yt−1) + α

ex ≈ 1 + x ⇒ yt = yt−1e
α ⇒ yt ≈ yt−1(1 + α)

is applicable to time series, which exhibit an exponential irregular growth,

but whose logarithmic transformation grows more or less linearly and thus

can be approximated by the random walk model.

• AR, MA, ARMA, ARIMA, ARFIMA models 2 as well as models based

on them (e.g. including some specific transformations aiming at removing

a seasonal trend) are variants of the ARIMA model presented in section

1.4.1.

• The ARCH model family (ARCH , GARCH, I-GARCH, GARCH-M) 3

is used to model time series whose variance changes in time (Ruppert

[2001a]).

• Capital Asset Pricing Model (CAPM) models the return for individual

securities or portfolios (Kerr [1997]).

• The Black and Scholes model is used for modelling prices of options taking

into consideration the specific properties of them (Tompkins [1994]).

1.4.1 ARIMA process

Notation

εt White noise
2 ARIMA = Autoregressive Integrative Moving Average, ARFIMA = Autoregressive Frac-

tionally Integrative Moving Average
3 ARCH = Autoregressive Conditional Heteroscedasticity, GARCH = Generalized Autore-

gressive Conditional Heteroscedasticity
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ρ Autocorrelation function

γ(h) Autocovariance function (covariance between Xt and Xt+h)

ĥ(h) = 1
n

∑n−h
j=1 (yj+h − ȳ) (yj − ȳ) Estimate of the autocovariance function

ρ̂(h) = γ̂(h)
γ̂(0) , ρ̂(h) = ρ̂(−h) Estimate of the autocorrelation function (SACF, sam-

ple autocorrelation function)

Bk yt = yt−k Backwards operator

∆yt = yt − B yt, ∆yt = (1− B)yt = yt − yt−1 Differencing operator

e Vector, representing residuals

s2
u Sample variance of the disturbance term

n Number of elements of a time series (sample size)

AR and MA processes

A variable yt is autoregressive of order p (AR(p)) if it is a function of its past

values (Glewwe [2000]):

AR(p) : yt = µ +

(
p∑

i=1

γiyt−1

)
+ εt (1.3)

where εt is white noise, i.e. a random number from a distribution with following

properties:

E(εt) = 0 (1.4)

E(ε2
t ) = ρ2

e (1.5)

Cov(εt, εs) = 0, s 6= t (1.6)

Cov means Covariance and is a measure of association between two variables

(Dougherty [1992]):

Cov(x, y) =
1
n

n∑

i=1

(xi − x̄) (yi − ȳ) (1.7)

Hence, white noise are randomly distributed real numbers with zero mean and

no association between numbers drawn at different points of time. Figure 1.6
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shows some examples of AR processes. An example of fitting an AR(1) to a

real time series can be found in appendix A. A moving average (MA) process

a) b)

c)

Figure 1.6: Examples of AR processes with different parameters (in all cases

there are 100 observations, x0 = 0.5 and µ = 0.2). Figure a) shows an AR(1)

process with γ = 0.5. Figure b) shows an AR(2) process with γ1 = −0.25,

γ2 = −0.25. Figure c) is an AR(3) process with γ1=-0.3, γ2 = −0.3, γ2=-0.3.

is defined as

MA(q) : yt = µ + εt −
q∑

i=1

θiεt−i (1.8)

Since every MA process can be rewritten as an AR process (Glewwe [2000]),

the diagram showing example processes is omitted here.

ARIMA process

An ARMA (autoregressive moving average) model is defined as:

ARMA(p, q) : yt = µ +

(
p∑

i=1

γiyt−1

)
+ εt +




q∑

j=1

θjεt−j


 (1.9)
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In practice, one applies the ARMA process not to the time series, but to trans-

formed time series. It is often the case, that the time series of differences is

stationary in spite of the non-stationarity of the underlying process. Station-

ary time series can be well estimated by the ARMA model. That leads to the

definition of the ARIMA model:

∆dyiis ARMA(p, q) process → ytis ARIMA(p, d, q)process

Thus, an ARIMA(p, d, q) process models the stationary differences of the order d

of the time series yt using the ARMA(p, q) process. For the forecasting purposes

the usage of ARIMA model can be summarized by the flowchart shown in figure

1.7. In the first step, the differencing operator is applied to the time series until

Figure 1.7: Preparation of the time series for usage with the ARIMA model

it becomes stationary. Normally, the value of d does not exceed 2 (Ruppert

[2001b]). The determination whether yt is stationary or not is performed by
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visualizing the SACF of yt (this diagram is called correlogram). Several authors

suggest this technique (Pollock [1992], Robinson [1999], Ruppert [2001b]). The

SACF converges to zero, if the process is a stationary one. The SACF of a

non-stationary process decays to zero much more slowly (see figure 1.8). After

a) b)

Figure 1.8: Visualisation of the SACFs of a stationary (a)) and a non-stationary

process (b))

the d value is determined, any non-zero mean is removed from the time series

(the mean is calculated and subtracted from each element of the time series).

Afterwards, the parameters p and q are estimated. This is usually done by

fitting models with different p and q parameters to the test data and choosing

one that matches the time series best. Due to the high number of different

approaches to this task, the detailed explanation of this step is omitted here.

Most textbooks use a computer program for demonstrating the use of ARMA

model in practice. So does the author in appendix C.

If after the validation (last step) one figures out that the model fits the data well

enough, it is used for forecasting purposes. In order to explain how forecasting

is performed with the ARIMA model, we need to add some formal definitions.

The ARMA model can - apart from the definition given above - be written in

the following form (Ruppert [2001b]):

(
1−

p∑

i=1

γi Bi yi

)
(yt − µ) =


1−

q∑

j=1

θj Bj yj


 εt (1.10)

If

γ(B) = 1−
p∑

i=1

γi Bi and θ(B) = 1−
q∑

j=1

θj Bj (1.11)
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then ARMA process can further be defined as (Borchers [2001])

γ(B)yt = θ(B)εt (1.12)

Note that this definition is valid only if the mean value has previously been

subtracted from the time series. Now, we define the so-called transfer function

ψ(B) =
θ(B)
φ(B)

(1.13)

and rewrite the definition of the ARMA process as (Borchers [2001])

yt = ψ(B)an (1.14)

The transfer function can be expanded as

ψ = 1 +
∞∑

i=1

ψi Bi (1.15)

The coefficients ψi can be obtained using the Taylor series expansion (see ap-

pendix E). Predictions of time series elements are given by

ŷt =
∞∑

j=t

ψjεn+t−j (1.16)

The random error associated with the forecast is defined as

en(t) = εn+t +
t−1∑

i=1

ψiεn+t−i (1.17)

In order to calculate the forecasts, we have to calculate the series ε corresponding

to the time series y. Since

en(1) = εn+1 an is equal to an = yn − ŷn−1(1) (1.18)

Now it is time to give an overview about the forecast procedure and that is done

with a diagram shown in figure 1.9. Written in the mixed form, the ARIMA

model looks like
(

1−
p∑

i=1

γi Bi yi

)(
d∏

k=1

(1− B)

)
=


1−

q∑

j=1

θj Bj yj


 εt (1.19)

Note that - contrary to the ARMA model - this form takes into consideration

that the ARIMA model is an ARMA model operating on differences of the order

d of the original values, hence there is a need to add the term
(

d∏

k=1

(1−B)

)
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Figure 1.9: The forecasting process

to the model definition. Again, the mean of the time series has been subtracted

from the original values, thus there is only yt term on the left side of the equation,

not (yt − µ). Written in this form, we can derive the actual values of γ and

θ with respect to the d parameter of the ARIMA model. Having these actual

values, we can calculate the lag 1 predictions:

ŷn−1(1) =

(∑

i

γiyn−i

)
+


∑

j

θiεn−j


 (1.20)

Be aware that here we are using the actual values of γ and θ obtained from the

mixed form equation of the ARIMA model. Using this information, we obtain

the values of ε for the part of time series we know. If we have a time series

Z = z1, z2, . . . , zn

and we want to use first 10 elements of the time series to forecast the values

after the 10th element, we must calculate the ε value for the first 10 elements

(i.e. for the ”training” set of the ARIMA model). Next, the transfer function

ψ(B) =
θ(B)
φ(B)

has to be expanded to obtain the ψi weights. Now we come to the crucial point

- namely the calculation of the forecasts themselves. They are defined as:

ŷt =

(∑

i

γiyt−i

)
+


∑

j

θiεt


 (1.21)



CHAPTER 1. FINANCIAL TIME SERIES 32

Having computed the forecasts, we have to calculate the confidence intervals of

them. First we calculate the variances for each of the forecasts:

t = 1 ⇒ σ2
t = σ2

ε (1.22)

t > 1 ⇒ σ2
t = σ2

ε

(
1 +

t−1∑

i=1

ψ2
i

)
(1.23)

σε is the standard deviation of the ε values. The last step is the calculation of

confidence intervals:

Lower confidence interval : ŷt − Zσt (1.24)

Upper confidence interval : ŷt + Zσt (1.25)

The value Z depends on the confidence interval we use (e.g. 1.96 for a 95 % two-

tailed confidence interval). In this way, we can obtain information, which points

lie within a particular confidence interval (the confidence interval is the range

we expect the actual values to lie, University of Derby in Austria; see appendix

F). An example of forecasting using ARIMA process is given in appendix D.

1.4.2 ARCH models

Motivation

The ARIMA models presented in section 1.4.1 have one severe drawback: they

assume that the volatility 4 of the variable being modelled (e.g. stock price) is

constant over time. In many cases this is not true. Large differences (of either

sign) tend to be followed by large differences. In other words, the volatility of

asset returns appears to be serially correlated (Campbell et al. [1997]). Figure

1.10 shows monthly excess returns on the CRSP value-weighted stock index over

the period from 1926 to 1994. The individual monthly returns vary wildly, but

they do so within a range which itself changes slowly over time. The range for

returns is very wide in the 1930s, for example, and much narrower in the 1950s

and 1960s ([Campbell et al., 1997, p. 482]).

ARCH and related models were developed in order to capture this property of

financial time series.
4Volatility is the synonym for standard deviation.
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Figure 1.10: Monthly Excess Log US Stock Returns, 1926 to 1994 ([Campbell

et al., 1997, p. 482])

ARCH model

The ARCH (Autoregressive Conditional Heteroscedasticity)5 process is defined

as

ARCH(q): yt = σtεt (1.26)

σt =

√√√√α0 +
q∑

i=1

αiy2
t−i (1.27)

where σt is the conditional standard deviation of yt given the past values of this

process. The ARCH(q) process is uncorrelated and has a constant mean, a con-

stant unconditional variance (α0), but its conditional variance is nonconstant.

This model has a simple intuitive interpretation as a model for volatility clus-

tering: large values of past squared returns (y2
t−i) give rise to a large current

volatility (Martin [1998]).

The ARCH(q) model is a special case of the more general GARCH(p,q) model

defined as (GARCH means ”Generalised ARCH”)

GARCH(p,q): yt = σtεt (1.28)

σt =

√√√√α0 +
p∑

i=1

αiy2
t−i +

q∑

j=1

βjσ2
t−j (1.29)

5This section is based upon Ruppert [2001a].
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In this model, the volatility today depends upon the volatilities for the previous

q days and upon the squared returns for the previous p days.

A long and vigorous line of research followed the basic contributions of Engle

and Bollerslev (developers of ARCH and GARCH model respectively), lead-

ing to a number of variants of the GARCH(p, q) model. These include power

GARCH (PGARCH) models, exponential GARCH (EGARCH) models, thresh-

old GARCH (TGARCH) models and other models that incorporate so-called

Leverage effects. Leverage terms allow a more realistic modelling of the ob-

served asymmetric behaviour of returns according to which a ”good-news”

price increase yields lower subsequent volatility, while a ”bad-news” decrease

in price yields a subsequent increase in volatility. It is also worth mentioning

two-component GARCH models which reflect differing short term and long term

volatility dynamics, and GARCH-in-the-mean (GARCH-M) models which allow

the mean value of returns to depend upon volatility (Martin [1998]).



Chapter 2

Neural networks

2.1 Introduction

2.1.1 What are neural networks?

Neural network learning methods provide a robust approach to approximat-

ing real-valued, discrete-valued and vector-valued target functions. For certain

types of problems, such as learning to interpret complex real-world sensor data,

artificial neural networks are among the most effective learning methods cur-

rently known ([Mitchell, 1997, p. 81]).

The study of artificial neural networks (ANNs) has been inspired in part by the

observation that biological learning systems are built of very complex webs of

interconnected neurons. In rough analogy, artificial neural networks are built

out of a densely interconnected set of simple units, where each unit takes a

number of real-valued inputs (possibly the outputs of other units) and produces

a single real-valued output, which may become input to other units ([Mitchell,

1997, p. 82]).

To develop a feel for this analogy, let us consider a few facts from neurobiology.

The human brain, for example, is estimated to contain a densely interconnected

network of approximately 1011 neurons, each connected, on average, to 104 oth-

ers. Neuron activity is typically excited or inhibited through connections to

35
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other neurons. The fastest neuron switching times are known to be on the order

of 10−3 seconds, quite slow compared to computer switching speeds of 10−10

seconds. Yet humans are able to make surprisingly complex decisions, surpris-

ingly quickly. For example, it requires approximately 10−1 seconds to visually

recognize one’s mother. Notice the sequence of neuron firings that can take place

during this 10−1-second interval cannot possibly be longer than a few hundred

steps, given that the information-processing abilities of biological neural sys-

tems must follow from highly parallel processes operating on representations

that are distributed over many neurons. One motivation for ANN systems is to

capture this kind of highly parallel computation based on distributed represen-

tations. Most ANN software runs on sequential machines emulating distributed

processes, although faster versions of the algorithms have also been implemented

on highly parallel machines and on specialized hardware designed specifically

for ANN applications ([Mitchell, 1997, p. 82]).

While ANNs are loosely motivated by biological neural systems, there are many

complexities to biological neural systems that are not modelled by ANNs, and

many features of ANNs are known to be inconsistent with biological systems

([Mitchell, 1997, p. 82]). The ANN related research can be divided into two

directions:

• research targeting at exploring the properties of biological systems by

means of neural networks (computational neuroscience) and

• research targeting on development of systems capable to approximate com-

plex functions efficiently and independent of whether they ”mirror” bio-

logical ones or not.

By ”neural network” in scope of this work the author always refers to the second

type of neural networks, if not stated otherwise.

2.1.2 Basic definitions

The structure of a neural network of most commonly used type is schematically

shown in figure 2.1. It consists of several layers of processing units (also termed
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Figure 2.1: Basic structure of a multi-layer perceptron

neurons, nodes). The input values (input data) are fed to the neurons in the so-

called input layer in the left part of figure 2.1. The input values are processed

(the data processing in the neurons is discussed later in this chapter) within

the individual neurons of the input layer and then the output values of these

neurons are forwarded to the neurons in the hidden layer. The arrows indicate

connections from the input nodes to hidden nodes, along which the output val-

ues of the input nodes are passed on to the hidden nodes. These values obtained

as inputs by the hidden nodes are again processed within them and passed on

to either the output layer or to the next hidden layer (there can be more than

one hidden layer).

Each connection has an associated parameter indicating the strength of this

connection, the so-called weight. By changing the weights in a specific manner,

the network can ”learn” to map patterns presented at the input layer to target

values on the output layer. The description of the procedure, by means of which

this weight adaptation is performed, is called learning or training algorithm.

Sometimes, so-called bias units (also called bias parameters, thresholds) are also

present in the neural network (see figure 2.2). These are neurons with the prop-

erty that they always produce a +1 at the output. The constant output value
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Figure 2.2: Neural network with bias units.

of the bias node is described in most cases by the letter θ.

Usually, the data available for training the network is divided in (at least) two

non-overlapping parts: the so-called training and testing set. The commonly

larger training set is used to ”teach” the network the desired target function.

Then the network is applied to data in the test set in order to test its general-

ization ability, i.e. the ability to derive correct conclusions about the population

properties of the data from the sample properties of the training set (e.g. if a

network has to learn a sine function, it should produce correct results for all

real numbers and not only for those in the training set). If the network is not

able to generalize, but instead learns the individual properties of the training

patterns without recognizing the general features of the data (i.e. produces cor-

rect results for training patterns, but has a high error rate in the test set), it is

said to be overfitted or to be subject to overfitting.
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2.1.3 Properties of neural networks

ANN learning is well-suited to problems in which the training data corresponds

to noisy, complex sensor data, such as inputs from cameras and microphones. It

is also applicable to problems for which more symbolic representations are often

used, such as the decision tree learning tasks. In these cases ANN and decision

tree learning often produce results of comparable accuracy (Mitchell [1997]).

The backpropagation algorithm is the most commonly used ANN learning tech-

nique. It is appropriate for problems with the following characteristics (Mitchell

[1997]):

• Instances are represented by many attribute value pairs. The target func-

tion to be learned is defined over instances that can be described by a

vector of predefined features, such as the pixel values. These input at-

tributes may be highly correlated or independent of one another. Input

values can be any real values.

• The target function output may be discrete-valued, real-valued, or a vector

of several real- or discrete-valued attributes.

• The training examples may contain errors. ANN learning methods are

quite robust to noise in the training data.

• Long training times are acceptable. Network training algorithms typically

require longer training times than, say, decision tree learning algorithms.

Training times can range from a few seconds to many hours, depending

on factors such as the number of weights in the network, the number of

training examples considered, and the settings of various learning algo-

rithm parameters.

• Fast evaluation of the learned target function may be required. Although

ANN learning times are relatively long, evaluating the learned network,

in order to apply it to a subsequent instance, is typically very fast.

• The ability of humans to understand the learned target function is not

important. The weights learned by neural networks are often difficult for
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humans to interpret. Learned neural networks are less easily communi-

cated to humans than learned rules.

2.1.4 Multi-layer perceptron

There exists a huge variety of different ANN types (ANN topologies), but the

most commonly used one is the multi-layer perceptron (MLP).

In the 1960es there was a great euphoria in the scientific community about

ANN based systems that were promised to deliver breakthroughs in many fields.

Single-layer neural networks such as ADALINE1 were used widely, eg in the do-

main of signal processing. This euphoria was given an end by the publication

of Minsky and Papert (Minsky and Papert [1969]), who showed that the ANNs

used at that time were not capable of approximating target functions with cer-

tain properties (target functions that are not linearly separable such as the

”exclusive or” (XOR) function). In the 1970es only a small amount of research

was devoted to ANNs. In the mid-1980s, the ANNs were ”revived” by inven-

tion of the error backpropagation (EBP) learning algorithm in combination with

multi-layer networks. As can be seen in figure 2.1, a MLP consists of at least

three layers: input layer, one or many hidden layers and output layer. The

individual nodes are connected by links where each link has a certain weight

(w1, w2, w3, w4, w5, w6 in the figure, note that contrary to the figure, each link

has a weight). Each node takes multiple values as input, processes them, and

produces an output, which can be ”forwarded” to other nodes. Given a node j,

Figure 2.3: Data processing within an ANN node

1ADALINE = ADAptive LInear NEuron
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its output is equal to

oj = transfer
(∑

(xjiwji)
)

(2.1)

where oj is the output of node j, xji the ith input to unit j, wji the weight

associated with ith input to unit j and transfer a transfer function discussed

later in this section. Figure 2.3 visualizes the data processing that takes place

within a node of an ANN. Note that a neuron may have an arbitrary number

of inputs, but only one output. By changing the weights of the links connecting

individual nodes, the ANN can be adjusted for approximating a certain function.

An example is given further in this section. The non-linear transfer function

Figure 2.4: Binary, sigmoid and tangens hyperbolicus transfer functions

transfer is responsible for transferring the weighted sum of inputs to some value

that is given to the next node. There are several types of transfer functions,

among which
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• Binary transfer function

transfer(x) =





1 if x ≥ 0

−1 otherwise
(2.2)

and its variants (eg 0 and 1 instead of 1 and -1) can be used sometimes,

however in most cases its use is not appropriate due to the fact that it is

not a smooth function.

• Sigmoid transfer function

transfer(x) =
1

1 + e−x
(2.3)

is the function used most often in MLPs. Note that the return value of

this function lies in the interval [0,1], so this function cannot be used in

ANNs that approximate functions, which can also take on negative values

(e.g. returns time series).

The reason for the popularity of this transfer function lies in the fact that

its first derivative (which is needed for training the ANN), is a very simple

expression:

transfer′(x) =
(

1
1 + e−x

)′

transfer′(x) =
(−1 · (1 + e−x)−2

) · (1 + e−x)′

transfer′(x) =
(−1 · (1 + e−x)−2

) · (e−x) · (−1)

⇒ transfer′(x) =
e−x

(1 + e−x)2

transfer′(x) = transfer(x) · (1− transfer(x))

since transfer(x) · (1− transfer(x)) =
(

1
1 + e−x

)
·
(

1− 1
1 + e−x

)

transfer(x) · (1− transfer(x)) =
e−x

(1 + e−x)2

• Tangens hyperbolicus (tanh) transfer function

transfer(x) = tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x
(2.4)

has the advantage of having an output interval of [-1,1], thus it can be used

in ANNs that need to approximate functions that can take on negative

values (eg stock index differences).
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Figure 2.5: ANN approximating the OR function

Consider the simple ANN shown in figure 2.5. It approximates the OR function.

Assume the transfer function of the output node is binary and the values the

input nodes can take on are -1 (false) and 1 (true). In table 2.1 it is shown how

the ANN yields the correct results. The theoretical ability of ANNs of certain

Input 1 Input 2 Output 1

-1 -1 (−1) · 1 + (−1) · 1 = −2, transfer(−2) = −1

-1 1 (−1) · 1 + 1 · 1 = 0, transfer(0) = 1

1 -1 1 · 1 + (−1) · 1 = −2, transfer(0) = 1

1 1 1 · 1 + 1 · 1 = 2, transfer(2) = 1

Table 2.1: Reaction of the network approximating the OR function to different

inputs

types to represent functions of arbitrary complexity has been proven by means

of the Kolmogorov’s theorem that is described in appendix G.

2.1.5 Learning algorithms

Contrary to such a simple case as the OR function is, usually the weights of the

ANN must be adjusted using some learning algorithm in order for the ANN to

be able to approximate the target function with a sufficient precision. Two of

these learning algorithms are presented in following sections.
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2.1.6 Stochastic gradient descent backpropagation learn-

ing algorithm

Usually, the term ”neural network” refers to a MLP trained with this learning

algorithm, often called ”backpropagation” or ”error-backpropagation” (EBP).

Assume an ANN uses the following error function

E(~w) =
1
2

∑

d∈D

∑

k∈outputs

(tkd − okd)2 (2.5)

where okd is the output value produced by output neuron k, tkd the desired

(correct) value this neuron should produce and D denotes the set of all training

patterns, i.e. E(~w) is the sum of prediction errors for all training examples.

Prediction errors of individual training examples are in turn equal to the sum

of the differences between output values produced by the ANN and the desired

(correct) values. ~w is the vector containing the weights of the ANN.

The goal of a learning algorithm is to minimize E(~w) for a particular set of

training examples. There are several ways to achieve this, one of them being

the so-called gradient descent method. Basically, it works in the following way

(Schraudolph and Cummins [2002]):

1. Choose some (random) initial values for the model parameters.

2. Calculate the gradient G of the error function with respect to each model

parameter.

3. Change the model parameters so that we move a short distance in the

direction of the greatest rate of decrease of the error, i.e. , in the direction

of −G.

4. Repeat steps 2 and 3 until G gets close to zero.

Gradient G = ∇f(x) of function f is the vector of first partial derivatives (The

Numerical Algorithms Group Ltd)

∇f(x) =
(

∂f(x)
∂x1

,
∂f(x)
∂x2

, . . . ,
∂f(x)
∂xn

)
(2.6)

In our case, G = ∇E(~w) (i.e. the derivative of the error function E with

respect to the weight vector ~w). When interpreted as a vector in weight space,
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the gradient specifies the direction that produces the steepest increase in E

([Mitchell, 1997, p. 91]). The negative of this vector therefore gives the direction

of steepest decrease.

Consider the figure 2.6. It shows the behaviour of E with respect to one weight

w. In order to decrease the value of error function E, we always must move in the

reverse direction of the gradient (slope). If the gradient of E is negative, we must

increase w to move ”forward” towards the minimum. If E is positive, we must

move ”backwards” to the minimum. Note that this figure shows the relation

between error function and weights only schematically. It shows the relation

between E and only one particular weight w (in most neural networks there are

many weights). By repeating this over and over, we move ”downhill” in E until

Figure 2.6: Basic principle of gradient descent (Schraudolph and Cummins

[2002]).

we reach a minimum, where ∇E(~w) = 0, so that no further progress is possible

(figure 2.7). Having this in mind, we will now explore the Stochastic gradient

descent backpropagation (error backpropagation) learning algorithm shown in

figure 2.8. First, a neural network is created and initialized (weights are set to

small random numbers). Then, until the termination condition (eg the mean

squared error of the ANN is less than a certain error threshold) is met, all

training examples are ”taught” the ANN. Inputs of each training example are

fed to the ANN, and processed from the input layer, over the hidden layer(s) to

the output layer. In this way, vector o of output values produced by the ANN

is obtained (step 3a).

In the next step, the weights of the ANN must be adjusted. Basically, this



CHAPTER 2. NEURAL NETWORKS 46

Figure 2.7: Gradient descent: movement to the minimum (Schraudolph and

Cummins [2002]).

happens by ”moving” the weight in the direction of steepest descent of the

error function. This happens by adding to each individual weight the value

∆w = ηδjxji. The explanation of this term follows.

In the following explanation, the error function

Ed(~w) =
1
2

∑

k∈outputs

(tk − ok)2 (2.7)

will be used. It is the error of the ANN for the training example d.

As mentioned above, we are interested in reducing the error E of the ANN in

terms of equation 2.5 by reducing Ed for all d (training examples). Hence, the

weight update value ∆w must ”move” the weight in the direction of steepest

descent of the error function Ed. And this value is equal to the steepest descent

of the error function Ed with respect to the weight, or the partial derivative of

Ed with respect to the weight. So,

∆w = −η · ∂Ed

∂wji
(2.8)

The term η is the learning rate that determines the size of the step that we use

for ”moving” towards the minimum of E. The learning rate can be thought of

as the length of the arrows in figure 2.7. Usually η ∈ R, 0 < η ≤ 0.5. Note that

too large η leads to oscillation around the minimum, while too small η can lead

to a slow convergence of the ANN.

Consider the second term in equation 2.8, namely ∂Ed

∂wji
. Note that wji can

influence the ANN only through netj , i.e. the weighted sum of inputs for unit
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Algorithm parameters: training examples, η, nin, nout, nhidden

Each training example is a pair of the form 〈~x,~t〉, where ~x is the vector of

network input values, and ~t is the vector of target network output values.

η is the learning rate (eg 0.05), nin is the number of network inputs, nhidden

the number of units in the hidden layer, and nout the number of output units.

The input from unit i to unit j is denoted by xji, and the weight from unit i to

unit j is denoted wji.

1. Create a feed-forward network with nin inputs, nhidden hidden units, and

nout output units.

2. Initialize all network weights to small random numbers (eg between -0.05

and 0.05).

3. Until the termination condition is met, do

• For each 〈~x,~t〉 in training examples, do

(a) Propagate the input forward through the network:

Input the instance ~x to the network and compute the output ou

of every unit u in the network.

Propagate the errors backward through the network:

(b) For each network output unit k, calculate its error term δk.

δk ← transfer′(netk)(tk − ok)

(c) For each hidden unit h, calculate its error term δh

δh ← transfer′(neth)
∑

k∈outputs wkhδk

(d) Update each network weight wji,

wji ← wji + ∆wji,

where ∆wji = ηδjxji.

Figure 2.8: Stochastic gradient descent backpropagation learning algorithm

([Mitchell, 1997, p. 98])
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j. Therefore, we can use the chain rule to write ([Mitchell, 1997, p. 102])

∂Ed

∂wji
=

∂Ed

∂netj

∂netj
∂wji

(2.9)

Provided that

∂netj
∂wji

= (netj)dwji

(netj)dwji =

(∑
z

wjzxjz

)
dwji

(netj)dwji = (wj0 · xj0 + wj1 · xj1 + · · ·+ wji · xji + · · ·+ wjz · xjz)dwji

(netj)dwji = (0 · xj0 + 0 · xj1 + · · ·+ 1 · xji + · · ·+ 0 · xjz)dwji

⇒ ∂netj
∂wji

= xji

(2.10)

the equation 2.9 reduces to

∂Ed

∂wji
=

∂Ed

∂netj
xji (2.11)

The way δj = ∂Ed

∂netj
is calculated differs between output nodes and the nodes

that belong to the hidden layer. First, the output nodes will be treated and

then we will discuss the hidden nodes case .

Just as wji can influence the rest of the ANN only through netj , netj can

influence the ANN only through oj . Therefore, we can invoke the chain rule

again to write
∂Ed

∂netj
=

∂Ed

∂oj

∂oj

∂netj
(2.12)

The first term in equation 2.12 ∂Ed

∂oj
can be rewritten as

∂Ed

∂oj
= −(tj − oj) (2.13)
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since

∂Ed

∂oj
=

(
1
2

∑
z∈outputs

(tz − oz)2
)

doj


1

2

∑

k∈outputs

(tz − oz)2


 doj =

1
2
((t0 − o0)2 + (t1 − o1)2 + · · ·+ (tj − oj)2 + · · ·+ (tz − oz)2)doj


1

2

∑

k∈outputs

(tz − oz)2


 doj =

1
2
(0 + 0 + · · ·+ (tj − oj)2 + · · ·+ 0)doj


1

2

∑

k∈outputs

(tz − oz)2


 doj =

1
2
((tj − oj)2)doj


1

2

∑

k∈outputs

(tz − oz)2


 doj =

1
2
(t2j − 2tjoj + o2

j )doj


1

2

∑

k∈outputs

(tz − oz)2


 doj =

1
2
(−2tj + 2oj)


1

2

∑

k∈outputs

(tz − oz)2


 doj = (−tj + oj)


1

2

∑

k∈outputs

(tz − oz)2


 doj = −(tj − oj)

(2.14)

The second term in equation 2.12, ∂oj

∂netj
, is resolved easily, if one remembers

how nodes of an ANN process information by looking at figure 2.3. Due to the

fact that oj = transfer(netj), i.e. the weighted sum of inputs transferred by

the transfer function, the second term becomes

∂oj

∂netj
=

∂transfer(netj)
∂netj

∂oj

∂netj
= transfer′(netj)

(2.15)

Combining results of equations 2.8, 2.9, 2.10, 2.12, 2.13 and 2.15, the weight

update ∆w for output nodes is expressed as

∆w = −η
∂Ed

∂wji

∆w = −η
∂Ed

∂netj

∂netj
∂wji

∆w = −η

(
∂Ed

∂netj

)(
∂netj
∂wji

)

∆w = −η

((
∂Ed

∂oj

)(
∂oj

∂netj

))
(xji)

∆w = −η ((−(tj − oj)) (transfer′(netj))) (xji)

∆w = η · (tj − oj) · transfer′(netj) · xji

(2.16)
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Having explained the weight update rule for output nodes, we now will discuss

how weights of hidden nodes are updated. As stated above (p. 48), of all

sub-expressions of the weight update rule

∆w = −η
∂Ed

∂netj

∂netj
∂wji

(2.17)

only ∂Ed

∂netj
differs between output and hidden nodes. So, here we will describe

only the derivation of this term, since all other expressions are same for both

output and hidden nodes.

For hidden nodes, the derivation of ∂Ed

∂netj
must take into account the indirect

ways in which wji can influence the network outputs and hence Ed. For this

reason, we will find it useful to refer to the set of all units immediately down-

stream of unit j in the network (i.e. all units whose direct inputs include the

output of unit j). We denote this set of units by downstream(j). Notice that

netj can influence the network outputs (and therefore Ed) only through the

units in downstream(j). Therefore we can write ([Mitchell, 1997, p. 103])

∂Ed

∂netj
=

∑

k∈downstream(j)

∂Ed

∂netk

∂netk
∂netj

∂Ed

∂netj
=

∑

k∈downstream(j)

−δk
∂netk
∂netj

∂Ed

∂netj
=

∑

k∈downstream(j)

−δk
∂netk
∂oj

∂oj

∂netj

∂Ed

∂netj
=

∑

k∈downstream(j)

−δkwkj
∂oj

∂netj

∂Ed

∂netj
=

∑

k∈downstream(j)

−δkwkjtransfer′(netj)

(2.18)

Thus, the weight update rule for hidden nodes is equal to

∆w = −η
∂Ed

∂wji

∆w = −η
∂Ed

∂netj

∂netj
∂wji

∆w = −η


 ∑

k∈downstream(j)

(−δkwkjtransfer′(netj))


 (xji)

∆w = η


 ∑

k∈downstream(j)

(δkwkjtransfer′(netj))


 (xji)

(2.19)
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There are many improvements of this algorithm such as momentum term, weight

decay etc described in the appropriate literature (eg Bishop [1996]). Neverthe-

less, MLP in combination with stochastic gradient descent learning algorithm is

the most popular ANN technique used in practice. Another important feature

of this learning algorithm is that it assumes a quadratic error function, hence it

assumes there is only one minimum. In practice, the error function can have -

apart from the global minimum - multiple local minima. There is a danger for

the algorithm to land in one of the local minima and thus not be able to reduce

the error to highest extent possible by reaching a global minimum.

2.1.7 Scaled conjugate gradient learning algorithm

Figure 2.9: Schematic illustration of fixed-step gradient descent for an error

function which has substantially different curvatures along different directions

([Bishop, 1996, p. 265]).

Despite its popularity, the stochastic gradient descent backpropagation learn-

ing algorithm has several substantial drawbacks. Firstly, there is the need to

specify the value of the learning rate η. Up to now, the optimal value is ob-

tained empirically, without any theoretical knowledge about how the optimal η

is determined. The second, much more severe drawback of this method is slow

convergence.

Figure 2.9 depicts the contours of E, for a hypothetical two-dimensional weight

space, in which the curvature of E varies significantly with direction. At most

points on the error surface, the local gradient does not point directly towards

the minimum. Gradient then takes many small steps to reach the minimum,

and is clearly a very inefficient procedure ([Bishop, 1996, p. 264]).

The scaled conjugate gradient (SCG) learning algorithm does not have this dis-
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advantage, but is far more complicated than the stochastic gradient descent

backpropagation algorithm. The explanation in this section will firstly intro-

duce the line search, a concept upon which the further explained conjugate

gradient (CG) learning algorithm is based and concludes with explanation of

the SCG algorithm, that is an extension of the CG algorithm.

CG and SCG algorithms involve taking a sequence of steps through weight

space. It is convenient to consider each of these steps in two parts. First we

must decide the direction in which to move, and second, we must decide how far

to move in that direction. With simple gradient descent, the direction of each

step is given by the local negative gradient of the error function, and the step

size is determined by an arbitrary learning rate parameter. We might expect

that a better procedure would be to move along the direction of the negative

gradient to find the point at which the error is minimized. More generally we

can consider some search direction in weight space, and then find the minimum

of the error function along that direction. This procedure is referred to as a

line search, and it forms the basis for several algorithms which are considerably

more powerful than gradient descent. We first consider how line searches can

be implemented in practice ([Bishop, 1996, p. 272]).

Suppose that at step t in some algorithm the current weight vector is wt, and

we wish to consider a particular search direction dt through weight space. The

minimum along the search direction then gives the next value for the weight

vector:

wt+1 = wt + λtdt (2.20)

where the parameter λt is chosen to minimize

E(λ) = E
(
wt + λdt

)
(2.21)

This gives us an automatic procedure for setting the step length, once we have

chosen the search direction ([Bishop, 1996, p. 272]). The line search represents a

one-dimensional minimization problem. A simple approach would be to proceed

along the search direction in small steps, evaluating the error function at each

new position, and stop when the error starts to increase (Hush and Salas [1988]).
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Figure 2.10: Bracketing the minimum ([Bishop, 1996, p. 273]).

It is possible, however, to find very much more efficient approaches (Press et al.

[1992]). Consider first the issue of whether to make use of gradient information

in performing a line search. We have already argued that there is generally

a substantial advantage to be gained from using gradient information for the

general problem of seeking the minimum of the error function E in the W -

dimensional weight space. For the sub-problem of line search, however, the

argument is somewhat different. Since this is now a one-dimensional problem,

both the value of the error function and the gradient of the error function each

represent just one piece of information. An error function calculation requires

one forward propagation and hence needs ∼ 2NW operations, where N is the

number of patterns in the data set. An error function gradient evaluation,

however, requires a forward propagation, a backward propagation, and a set of

multiplications to form the derivatives. It therefore needs ∼ 5NW operations,

although it does allow the error function itself to be evaluated as well. On

balance the line search is slightly more efficient if it makes use of error function

evaluations only ([Bishop, 1996, pp. 272–273]). Each line search proceeds in

two stages. The first stage is to bracket the minimum by finding three points

a < b < c along the search direction such that E(a) > E(b) and E(c) > E(b) as

shown in figure 2.10. Since the error function is continuous, this ensures that

there is a minimum somewhere in the interval (a, c) (Press et al. [1992]). The

second stage is to locate the minimum itself. Since the error function is smooth
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Figure 2.11: Parabolic interpolation used to perform line-search minimization

([Bishop, 1996, p. 274]).

and continuous, this can be achieved by a process of parabolic interpolation.

This involves fitting a quadratic polynomial to the error function evaluated at

three successive points, and then moving to the minimum of the parabola, as

illustrated in figure 2.11. The process can be repeated by evaluating the error

function at the new point, and then fitting a new parabola to this point and

two of the previous points ([Bishop, 1996, pp. 272–273]).

To apply line search to the problem of error function minimization, we need

to choose a suitable search direction at each stage of the algorithm. Suppose

we have already minimized along a search direction given by the local negative

gradient vector. We might suppose that the search direction at the next iteration

will be given by the negative gradient vector at the new position. However, the

use of successive gradient vectors turns out in general not to represent the best

choice of search direction. To see why, we note that at the minimum of the line

search we have (see equation 2.21)

∂

∂λ
E(wt + λdt) = 0 (2.22)

which gives
(∇Et+1

)T
dt = 0 (2.23)

Thus, the gradient at the new minimum is orthogonal to the previous search

direction, as illustrated geometrically in figure 2.12. Choosing successive search

directions to be the local negative gradient directions can lead to the problem
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Figure 2.12: Orthogonality of new gradient after line minimization ([Bishop,

1996, p. 275]).

already indicated in figure 2.9 in which the search point oscillates on successive

steps while making little progress towards the minimum. The algorithm can

then take many steps to converge, even for a quadratic error function ([Bishop,

1996, p. 275]). The solution to this problem lies in choosing the successive

Figure 2.13: The concept of conjugate directions ([Bishop, 1996, p. 276]).

search directions dt such that, at each step of the algorithm, the component of

the gradient parallel to the previous search direction, which has just been made

zero, is unaltered. This is illustrated in figure 2.13. Suppose we have already

performed a line minimization along the direction dt, starting from the point

wt, to give the new point wt+1. Then, at the point wt+1 we have

∇E(wt+1)T dt = 0 (2.24)

We now choose the next search direction dt+1 such that, along this new direc-
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tion, we retain the property that the component of the gradient parallel to the

previous search direction remains zero. Thus we require that

∇E(wt+1 + λdt+1)T dt = 0 (2.25)

as shown in figure 2.13. If we now expand 2.25 to first order in λ, and note that

the zeroth-order term vanishes as a consequence of equation 2.24, we obtain

(dt+1)T Hdt = 0 (2.26)

where H is the Hessian matrix evaluated at the point wt+1. If the error surface

is quadratic, this relation holds for arbitrary values of λ in equation 2.25, since

the Hessian matrix is constant, and higher-order terms in the expansion of 2.25

in powers of λ vanish. Search directions which satisfy 2.26 are said to be non-

interfering or conjugate ([Bishop, 1996, pp. 275–276]).

The conjugate gradient algorithm trains the ANN in such a way, that at a

certain iteration of the algorithm, the chosen search direction is conjugate to

all previous search directions. The conjugate gradient algorithm is descried in

detail by Bishop ([Bishop, 1996, pp. 276–282]).

The scaled conjugate gradient (SCG) algorithm developed by Møller (Møller

[1993]) is an extension the conjugate gradient algorithm outlined above. Its

main advantages is the avoidance of the line-search procedure (that is present

in the CG algorithm) so that SCG is faster than both CG and stochastic gradient

descent backpropagation algorithms. Before proceeding to the explanation of

Møller’s SCG algorithm 2, some related notation is given. Let N be the number

of weights in a neural network. A N×N matrix A is said to be positive definite,

if

yT Ay > 0, ∀y ∈ RN (2.27)

Let p1, p2, . . . , pk be a set of non-zero weight vectors in R. The set is said to be

a conjugate system with respect to a non-singular symmetric N ×N matrix A

if

pT
i Apj = 0, i 6= j, i = 1, 2, . . . , k (2.28)

2The explanation of the SCG algorithm is based upon [Møller, 1993, pp. 61–74].
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holds. The set of points w in R satisfying

w = w1 + α1p1 + · · ·+ αkpk, αi ∈ R (2.29)

where w1 is a point in weight space and p1, p2, . . . , pk is a subset of a conjugate

system, is called k-plane or πk (Møller [1993]). The SCG algorithm is shown

in figure 2.14. The SCG algorithm works in principle according to following

scheme: at iteration k of the algorithm, choose a search direction pk and step

size αk, such that E(wk + αkpk) < E(wk), i.e. the movement into the direction

pk by αk corresponds to the movement to the minimum of the error function.

The process is to be repeated until ∇E(wk) = 0.

The SCG algorithm follows this strategy but uses information from the second-

order approximation of the error function E given by

E(w + y) ≈ E(w) + E′(w)T y +
1
2
yT E′′(w)y (2.30)

The quadratic approximation to E in a neighbourhood of a point w is

Eqw(y) = E(w) + E′(w)T y +
1
2
yT E′′(w)y (2.31)

In order to determine minima to Eqw(y) the critical points for Eqw(y) must be

found, i.e. the points where

E′
qw(y) = E′′(w)y + E′(w) = 0 (2.32)

The critical points are the solution to the linear system defined by the equation

2.32. According to Hestenes and Stiefel [1952] and Johansson et al. [1991],

the solution can be simplified considerable, if a conjugate system is available.

Assume p1, p2, . . . , pN is a conjugate system, where N is the number of weights

of an ANN. The step from a starting point y1 to a critical point y∗ can be

expressed as a linear combination of p1, p2, . . . , pN :

y∗ − y1 =
N∑

i=1

αipi, αi ∈ R (2.33)

Multiplying equation 2.33 with pT
j E′′(w) and substituting E′(w) for −E′′(w)y∗



CHAPTER 2. NEURAL NETWORKS 58

1. Choose weight vector w1 and scalars 0 < σ ≤ 10−4, 0 < λ1 ≤ 10−6 and

λ̄1 = 0. Set p1 = r1 = −∇E(w1), k = 1, success = true.

2. If success = true then calculate second order information:

σk =
σ

|pk| sk =
∇E(wk + σkpk)−∇E(wk)

σk
δk = pT

k sk.

3. Scale sk: δk = δk + (λk − λ̄k)|pk|2.

4. If δk ≤ 0, then make the Hessian matrix positive definite:

λ̄k = 2(λk − δk

|pk|2 ) δk = −δk + λk|pk|2 λk = λ̄k

5. Calculate step size: µ = pT
k rk α = µk

δk
.

6. Calculate the comparison parameter: ∆k = 2δk[E(wk)−E(wk+αkpk)]
µ2

k

7. If ∆k ≥ 0

• then a successful reduction in error can be made:

wk+1 = wk + αkpk rk+1 = −∇E(wk+1) λ̄k = 0, success = true

If kmodN = 0

– then restart algorithm: pk+1 = rk+1

– else create new conjugate direction:

βk =
|rk+1|2 − rT

k+1rk

|rk|2 pk+1 = rk+1 + βkpk

If ∆k ≥ 0.75 then reduce the scale parameter: λk = 1
4λk.

• else (∆k < 0), a reduction in error is not possible: λ̄k = λk, success =

false

8. If ∆k < 0.25 then increase the scale parameter: λk = λk + δk(1−∆k)
|pk|2 .

9. If the steepest descent direction rk 6= 0 then set k = k + 1 and go to step

2,

else terminate and return wk+1 as the desired minimum.

Figure 2.14: Scaled conjugate gradient learning algorithm (Møller [1993])
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gives

pT
j (−E′(w)− E′′(w)y1) = αjp

T
j E′′(w)pj ⇒ (2.34)

αj =
pT

j (−E′(w)− E′′(w)y1)
pT

j E′′(w)pj
=
−pT

j E′
qw(y1)

pT
j E′′(w)pj

(2.35)

The critical point y∗ can be determined in N iterative steps using equations 2.33

and 2.35. Unfortunately y∗ is not necessarily a minimum, but can be a saddle

point or a maximum. Only if the Hessian matrix E′′(w) is positive definite then

Eqw(y) has a unique global minimum. This can be realized by (derivation is

given in Møller [1993])

Eqw(y) = Eqw(y∗) +
1
2
(y − y∗)T E′′(w)(y − y∗) (2.36)

If follows from 2.36 that if y∗ is a minimum then 1
2 (y − y∗)T E′′(w)(y − y∗) > 0

for every y, hence E′′(w) has to be positive definite.

The intermediate points yk+1 = yk + αkpk given by the iterative determination

of y∗ are in fact minima for Eqw(y) restricted to every k-plane πk : y = y1 +

α1p1 + · · ·+αkpk (Hestenes and Stiefel [1952]). These points can be determined

recursively using a theorem 1.

Theorem 1 Let p1, . . . , pN be a conjugate system and y1 a point in weight

space. Let the points y2, . . . , yN+1 be recursively defined by

yk+1 = yk + αkpk (2.37)

with αk = µk

δk
, µk = −pT

k (yk) and δk = pT
k E′′(w)pk. Then yk+1 minimizes

Eqw restricted to the k-plane πk given by y1 and p1, . . . , pk (Hestenes and Stiefel

[1952]).

The values pk in 1 can also be obtained using the theorem 2.

Theorem 2 Let y1 be a point in weight space and p1 and r1 equal to the steepest

descent vector −E′
qw(y1). Define pk+1 recursively by

pk+1 = rk+1 + βkpk, (2.38)

where rk+1 = −E′
qw(yk+1), βk = |rk+1|2−rT

k+1rk

rT
k

and yk+1 is the point generated

in theorem 1. Then pk+1 is the steepest descent vector to Eqw restricted to the
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(N − k)-plane πN−k conjugate to πk given by y1 and p1, . . . , pk (Hestenes and

Stiefel [1952]).

The functioning of the ”classical” CG algorithm (the one briefly presented

above) is based upon theorems 1 and 2 (Hestenes and Stiefel [1952]).

The main difference between CG and SCG algorithm is the way, how second-

order derivative E′′(w) is obtained in the term pT
k E′′(w)pk in theorem 1. In SCG

algorithm, the computational costly evaluation of this derivative is avoided by

using a non-symmetric approximation of E′′(wk)pk of the form

sk = E′′(wk)pk ≈ E′(wk + σkpk)− E′(wk)
σk

, 0 < σk ¿ 1. (2.39)

The approximation tends in the limit to the true value of E′′(wk)pk (Møller

[1993]). The calculation complexity and memory usage of sk are respectively

O(PN) 3 and O(N) (instead of O(N2) and O(PN2). The direct incorpora-

tion of this formula into the classical CG algorithm yields poor results for two

reasons:

• The algorithm works only for functions with positive definite Hessian ma-

trices (this is not always the case) and

• The quadratic approximation Eqw, on which the algorithm works, can be

very poor when the current point is far from the desired minimum (Gill

et al. [1981]).

Thus, some additional mechanisms must be provided in order for the SCG algo-

rithm to work. Møller (Møller [1993]) proposes the use of model-trust approach,

i.e. to add a term to the definition of sk is equation 2.39 in order to regulate

the indefiniteness of E′′(wk):

sk =
E′(wk + σkpk)− E′(wk)

σk
+ λkpk (2.40)

λk is adjusted in each iteration looking at the sign of δk, which directly reveals

if E′′(wk) is not positive definite. If δk ≤ 0 then the Hessian is not positive

3For the definition of the O-notation refer to appendix H



CHAPTER 2. NEURAL NETWORKS 61

definite and λk is raised and sk is estimated again. If the new sk is renamed as

s̄k and the raised λk as λ̄k then s̄k is

s̄k = sk + (λ̄k − λk)pk. (2.41)

Assume in a given iteration that δk ≤ 0. It is possible to determine how much

λk should be raised in order to get δk > 0. If the new δk is renamed as δ̄k then

δ̄k = pT
k s̄k = pT

k (sk + (λ̄k − λk)pk) = δk + (λ̄k − λk)|pk|2 > 0 ⇒

λ̄ > λk − δk

|pk|2 .
(2.42)

2.42 implies that if λk is raised with more than − δk

|pk|2 then δ̄k > 0. The question

is: how much should λ̄k be raised to get an optimal solution? This question

can not yet be answered, but it is clear that λ̄k in some way should depend on

λk, δk and |pk|2. A choice found to be reasonable is

λ̄k = 2
(

λk − δk

|pk|2
)

(2.43)

This leads to

δ̄k =δk + (λ̄k − λk)|pk|2 = δk + (2λk − 2
δk

|pk|2 − λk)|pk|2

=− δk + λk|pk|2 > 0.

(2.44)

The step size is given by

αk =
µk

δk
=

µk

pT
k sk + λk|pk|2

, (2.45)

with sk given by equation 2.39. The values of λk directly scale the step size in

such a way that the bigger λk is the smaller the step size, which agrees well with

out intuition of the function of λk. The quadratic approximation Eqw, on which

the algorithm works, may not always be a good approximation to E(w) since

λk scales the Hessian matrix in an artificial way. A mechanism to raise and

lower λk is needed which gives a good approximation, even when the Hessian is

positive definite. Define

∆k =
E(wk)− E(wk + αkpk)

E(wk)− Eqw(αkpk)
=

2δk(E(wk)− E(wk + αkpk))
µ2

k

. (2.46)
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Here ∆k is a measure of how well Eqw(αkpk) approximates E(wk +αkpk) in the

sense, that the closer ∆k is to 1, the better is the approximation. λk is raised

and lowered following the formula




if ∆k > 0.75 then λk = 1
4λk

if ∆k < 0.25 then λk = λk + δk(1−∆k)
|pk|2

. (2.47)

The formula for ∆k < 0.25 increases λk such that the new step size is equal

to the minimum of a quadratic polynomial fitted to E′(wk)T pk, E(wk) and

E(wk + αkpk) (Williams [1991]).

2.2 Pre- and postprocessing

2.2.1 Curse of dimensionality

One of the most important steps in designing a neural network is the choice

of appropriate data pre- and postprocessing. This is necessary due to a phe-

nomenon called curse of dimensionality. Consider a neural network that should

model a relationship between input values x1, . . . , xd and the output variable y.

One way to represent the training data would be to define intervals for input

variables and then to classify the data records by saying, in which interval the

values x1, . . . , xd of a particular record lie. For the case of d = 3, this results in

the division of input space into a high number of small boxes as shown in figure

2.15. Each box corresponds to an d-dimensional ”interval”. If the number of di-

visions (interval) per one dimension is M , then the total number of boxes equals

to Md, thus growing exponentially with the number of dimensions. Since each

point has to contain at least one data point, the number of training data also

grows exponentially when using this approach ([Bishop, 1996, pp. 7–8]). Thus,

contrary to the intuitive assumption that additional data should improve the

performance of the neural network, it is not necessary the case. In fact, often the

reduction of dimensionality of the training data is necessary for a proper func-

tioning of the neural network. This will be illustrated using another example.

Consider a neural network that should recognize some shape in a monochrome
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Figure 2.15: One way to specify a mapping from a d-dimensional space

x1, . . . , xd to an output variable y is to divide the input space into a num-

ber of cells, as indicated here for the case d = 3, and to specify the value of y for

each of the cells. The major problem with this approach is that the number of

cells and hence the number of example data points required, grows exponentially

with d, a phenomenon known as the curse of dimensionality ([Bishop, 1996, p.

8]).

picture with a resolution of 256×256 pixels. The most straightforward approach

would be to take each pixel as an input value to a neural network4. But in this

case the number of weights in the hidden layer would be enormous: if there is

one input node for each pixel, there are 256 × 256 = 65536 input nodes, each

of them being connected to each node of the hidden layer. Hence, each node

of the hidden layer would have 65536 connections (therefore 65536 weights) to

the input layer. This approach would require great amounts of training data

and huge computational resources, while it is highly questionable that - when

trained - such a neural network would perform well ([Bishop, 1996, p. 297]).

In this case, it makes more sense to preprocess the picture in order to extract

the features crucial for the recognition of the shape and then to apply5 neural

network on these features. So, it is known that so-called Fourier descriptors
4”Neural network” means here a neural network of any design except shared weights ar-

chitecture described on p. 77.
5It is assumed that basic preprocessing (segmentation, noise reduction, edge detection etc)

of the image data is already done.
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Figure 2.16: Schematic illustration of the use of pre-processing and post-

processing in conjunction with a neural network mapping ([Bishop, 1996, p.

296]).

capture the contour properties of a figure in 10 - 20 (depending on complexity

of the shape) real numbers and are even invariant to rotation of the figure.

The neural network could be trained to recognize the figure using these Fourier

descriptors6.

2.2.2 Operation of a neural network

The general scheme for using a neural network is shown in figure 2.16. Contin-

uing the above example of a shape recognition neural network, the input data

would correspond to the values of 65536 pixels. The preprocessing mechanism

would calculate the Fourier descriptors. These would be fed to the neural net-

work, and the neural network would produce some output values. Often, the

neural networks are designed so that each possible output value corresponds to

one output node (e.g. if the recognized shape is a rectangle, then output node

6An explanation of Fourier descriptors can be found in [Seul et al., 2000, p. 152].
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1 is equal to 1 while all others are zero; if the recognized shape is a circle, then

output node 2 is equal to 1 while all others are zero etc). The postprocessing

mechanism would transform such encodings into a more comprehensible form

(e.g. by displaying a rectangle, circle or printing some verbal output).

2.2.3 Methods of pre- and postprocessing

The methods of data pre- and postprocessing include7

Input normalization and encoding This technique is used to rescale the in-

put variables. This is often useful, if different variables have typical values

which differ significantly. In a system monitoring a chemical plant, two

of the inputs might represent a temperature and a pressure respectively.

Depending on the units in which each of these is expressed, they may

have values which differ by several orders of magnitude. Furthermore,

the typical sizes of the inputs may not reflect their relative importance in

determining the required outputs ([Bishop, 1996, p. 298]).

The following transformation would transform the original input variables

x1, . . . , xd into normalized variables x̃1, . . . , x̃d that have values lying in

similar ranges (N denotes the number of patterns in training set and xn
i

the value of variable xi of the n-th pattern):

i = 1 . . . d

x̄i =
1
N

N∑

n=1

xn
i σ2

i =
1

N − 1

N∑

n=1

(xn
i − x̄i)2

x̃n
i =

xn
i − x̄i

σi

The transformed values (x̃n
i ) will have zero mean and unit standard devi-

ation over the transformed training set.

Treatment of discrete data Continuous (real) variables can be fed directly

into a neural network without preprocessing. This applies also to ordinal

discrete variables (those values, which have a natural ordering, e.g. age).

7This section (including subsections) is based upon [Bishop, 1996, pp. 295–331]
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Categorical discrete variables (e.g. color ”red”, ”green”, ”blue”) are usu-

ally encoded using the 1-of-c coding ([Bishop, 1996, p. 300]). That means

that there is exactly one node corresponding to a particular value of the

variable (e.g. the colour variable may be represented by three input nodes

x = (x1, x2, x3), which are equal to (1, 0, 0) if the colour is red, (0, 1, 0)

and (0, 0, 1) if the colour is green or blue respectively).

Treatment of missing data Often the patterns of the training set are incom-

plete, i.e. there are records in the training set, which have ”empty” values.

If the amount of corrupted records is too high to ignore them, missing val-

ues are usually estimated using multiple regression analysis (i.e. to get

the missing values by running a regression over the other variables using

the available data, [Bishop, 1996, p. 301]).

Feature selection This method reduces the dimensionality of data by select-

ing a subset of available variables and discarding the remaining ones (see

section 2.2.4).

Principal component analysis Principal component analysis aims at reduc-

tion of dimensionality while preserving as much information contained in

the data as possible by combining together several input variables (see

section 2.2.5).

Invariances and prior knowledge Sometimes it is known that the output

variable should remain unchanged, when the input is subject to various

transformations. This may require additional provisions. On the other

side, knowledge of the application domain of the neural network can be of

great benefit for the design of it (see section 2.2.6).

2.2.4 Feature selection

Feature selection servers the purpose of reduction of the dimensionality of the

input data by discarding those input variables, which carry little information

or carry only the information already contained in other input variables. The

selection of relevant input variables (features) must, firstly, define how much
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information a particular feature subset does carry and secondly, determine the

optimal feature subset with respect to the information it carries.

Selection criteria

The selection criterion should measure the ”goodness” of a particular subset of

features. Ideally, this would involve training the neural network on that feature

subset, running the trained network against a test set and measuring the per-

formance of the network. This is not possible in most cases, for neural network

training often requires significant amount of time and due to the high number

of different feature subsets. Therefore, simpler methods are used in practice for

this task, in order to be able to explore a large number of feature combinations.

For regression problems, a single-layer-network with linear output units is trained

on a certain feature subset and its error value (sum of squared errors) is taken as

a measure of goodness of that feature subset. Contrary to MLPs, single-layer-

networks can be trained relatively quickly.

For classification problems, the class separability is used as a measure of good-

ness of a feature subset. A widely used measure of class separation is the Fisher’s

criterion function (see equation I.36 on p. 187 and explanation in appendix I).

Despite the curse of dimensionality, it cannot be expected that the performance

of the neural network increases as features are deleted. Performance measures J

with respect to feature subset X and a larger feature subset X+ usually satisfy

the monotonicity criterion

J(X+) ≥ J(X) (2.48)

hence, deletion of features cannot reduce the error rate. Therefore, such criteria

(e.g. the Mahalanobis distance) can only be used to compare different fea-

ture subset, but not to determine the optimal one. Instead, search techniques

presented in the following section must be used to obtain the optimal feature

subset.
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Figure 2.17: Example of data from two classes as described by two feature

variables x1 and x2. If the data was described by either feature alone then there

would be strong overlap of the two classes, while if both features are used, as

shown here, then the classes are well separated ([Bishop, 1996, p. 307])

Search techniques

The need for the application of search technique for finding the optimal feature

subset arises from the fact that there are many possible feature subsets: for a

total number d of features it equals to 2d (2 because each feature may be present

or absent in the subset). Thus, for all but very small input data dimensions,

exhaustive search (i.e. trying out all possible combinations of features) is com-

putationally impossible. Exhaustive search is applied only then, if there is no

alternative to it, such as the example in figure 2.17. Either feature alone does

contributes little information needed for discriminating the classes, but both

of them allow to distinguish the classes easily. Such cases can occur with an

arbitrary number of input variables (in this case 2).

If the selection criterion satisfies equation 2.48, then the so-called branch and

bound technique is guaranteed to find an optimal feature subset without per-
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forming an exhaustive search, since many potential subsets can be ruled out

without the need to evaluate them (a thorough treatment of branch and bound

technique can be found in Narendra and Fukunaga [1977]).

If this technique is still too computationally expensive, sequential search tech-

niques can be applied. In this case, the algorithm begins by considering each

individual input variable and choosing the one with the highest value of the

selection criterion. At each stage of the algorithm, the feature yielding the

largest selection criterion value is added to the feature subset (see figure 2.18).

A variation of this algorithm called sequential backward elimination starts with

Figure 2.18: Sequential forward selection illustrated for a set of four features,

denoted by 1,2,3 and 4. The single best feature variable is chosen first, and then

features are added one at a time such that at each stage the variable chosen is

the one which produces the greatest increase in the criterion function ([Bishop,

1996, p. 309]).

a ”subset” containing all features and removes one feature (that whose removal

results in least reduction of the selection criterion value) per step. The ad-

vantage of sequential backward elimination is the fact that it can cope with

situations like one shown in figure 2.17), where individual features contribute

little to increasing the selection criterion value if taken alone, but improve the

performance of neural network greatly when taken together. There are many

possible combinations of both algorithms.
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2.2.5 Principal component analysis

The principal component analysis aims at dimensionality reduction of input

data. One method was already mentioned, namely the Fisher’s discriminant

analysis described in appendix I. This method has a drawback, namely that

it reduces dimensionality from d (number of dimensions of the input data) to

exactly (C−1) (C being the number of classes). Methods of principal component

analysis allow dimensionality reduction to an arbitrary number of features. They

do not take into account target data information and rely solely upon input

data. Therefore, these methods can produce suboptimal results and there is

no guarantee, that the dimensionality reduction will not ”reduce the important

information away”.

Karhunen-Loeve transformation

The goal of principal component analysis is to map d-dimensional vectors xi

onto m-dimensional vectors zi with m < d. The vector x can be represented as

a linear combination of a set of d orthonormal vectors ui

x =
d∑

i=1

ziui (2.49)

where the vectors ui satisfy the orthonormality relation

uT
i uj = δij (2.50)

in which δij is the Kronecker delta symbol. Explicit expressions for the coeffi-

cients zi can be found by using the equation 2.50:

zi = uT
i x (2.51)

The dimensionality reduction happens in the following way: only m (m < d)

coefficients zi are used, while the remaining coefficients are replaced by constants

bi so that each vector x is approximated by an expression of the form

x̃ =
m∑

i=1

ziui +
d∑

i=m+1

biui (2.52)
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Then the algorithm aims at choosing the basis vectors ui and the coefficients

bi such that the approximation given by 2.52 with the values zi determined

using equation 2.51 gives the best approximation to the original vector x on

average for the whole data set. The error in the vector x introduced by the

dimensionality reduction is given by

xi − x̃i =
d∑

j=m+1

(zi, j − bj)uj (2.53)

The best approximation is one that minimizes the sum of the squares of the

errors over the whole data set. Thus, the value to be minimized is equal to

EM =
1
2

N∑

n=1

||xn − x̃n||2 =
1
2

N∑

n=1

d∑

i=m+1

(zn,j − bi)2 (2.54)

where N denotes the number of samples in the data set. If the derivative of EM

with respect to bi is set to zero, then

bi =
1
N

N∑

n=1

zn
i = uT

i x̄ (2.55)

x̄ =
1
N

N∑

n=1

xi (2.56)

Using the equations 2.51 and 2.55 the sum-of-squares error can be rewritten

as

EM =
1
2

d∑

i=m+1

N∑

n=1

(
uT

i (xn − x̄)
)2

(2.57)

=
1
2

d∑

i=m+1

uT
i Σui (2.58)

where Σ is the covariance matrix of the set of vectors xi and is given by

Σ =
∑

n

(xn − x̄)(xn − x̄)T (2.59)

There now remains the task of minimizing EM with respect to the choice of

basis vectors ui. As shown in [Bishop, 1996, pp. 454–456], the minimum occurs

when the basis vectors satisfy

Σui = λiui (2.60)
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so that they are the eigenvectors of the covariance matrix. Note that, since the

covariance matrix is real and symmetric, its eigenvectors can indeed be chosen to

be orthonormal as assumed. Using the equations 2.60 and 2.58 and making use

of the orthonormality relation in equation 2.50, the value of the error criterion

at the minimum is equal to

EM =
1
N

d∑

i=m+1

λi (2.61)

Thus, the minimum is obtained by choosing the d−m smallest eigenvalues, and

their corresponding eigenvectors, as the ones to discard.

The procedure described in this section is called Karhunen-Loeve transformation

or principal component analysis (because the eigenvectors ui are called principal

components).

Intrinsic dimensionality

a) b)

Figure 2.19: Examples of two-dimensional data sets which can be well approxi-

mated by a single parameter η ([Bishop, 1996, pp. 314–315])

Sometimes the dimensionality of a data set is lower than appears at the first

glance. Two examples are shown in the figure 2.19. Consider the example a).

The data points are represented by circles. Note that all the data points lie on a

single circle. Although the data set is two-dimensional, it can be approximated



CHAPTER 2. NEURAL NETWORKS 73

without loss of precision by a single parameter η, being in this case the angle.

Example b) shows a noisy data set. Again, it is two-dimensional, but can be

approximated by the parameter η, which describes the position of a data point

on an imaginary curve.

The ”real” dimensionality of such data sets is called intrinsic dimensionality.

Linear dimensionality reduction techniques such as principal component analysis

outlined previous section are incapable to discover this lower dimensionality.

Neural networks for dimensionality reduction

Figure 2.20: Auto-associative neural network for dimensionality reduction

([Bishop, 1996, p. 315]).

Auto-associative neural networks as shown in figure 2.20 can also be used

for dimensionality reduction. In this case, the network is trained to map the

d-dimensional input space onto itself ”over” a m-dimensional (m < d) hidden

layer. Thus, the input patterns fed to such a network are mapped onto them-
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selves (input and target data are equal). If the hidden units have linear transfer

functions, the error function has a unique global minimum and the principal

components can be derived from the weight vector of the hidden layer (i.e. from

the weights of connections from input to hidden layer). Such a network pro-

duces results comparable to the Karhunen-Loeve transformation.

According to Kramer [1991], the power of neural network as a principal compo-

nent ”analyst” can be extended by using 3 instead of 1 hidden layers. Such a

network performs a non-linear principal component analysis and thus is capable

of a better dimensionality reduction of the data.

2.2.6 Prior knowledge

In most cases, apart from the training and test data for neural networks, some

general information about the data is available to the designers of a neural net-

work. Such knowledge is called prior knowledge.

Consider, for example, a neural network, which should determine, whether a

tissue is normal or a tumour (e.g. for the purpose of cancer screening). From

medical statistics it may be known, that normal tissue is observed with a prob-

ability of 99 %, while tumours occur only in 1 % of observed data. But due to

technical reasons (more efficient network training), the designers may choose to

include equal amounts (50 % normal tissue, 50 % tumour) of normal and tumour

examples in the training set. In order to be able to use such a (well-trained)

network in a reality which significantly differs from the training data (differ-

ence between probabilities of observing normal and tumour tissue in training

set and test set), additional measures may become necessary (see [Bishop, 1996,

p. 319]).

The second problem that arises in the above example is the cost associated with

a misclassification. Misclassifying a sick person as healthy has much severe con-

sequences than misclassifying a healthy person as sick. This must also be taken

into account in designing a neural network (see [Bishop, 1996, p. 319]).

Another type of prior knowledge are invariances. A classical example is a neu-

ral network used for shape recognition: it should be able to recognize a certain
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shape irrespective of its rotation, location within the image or size (a rectangle

remains a rectangle independent of whether it is rotated by 75 degrees or by

125).

There are three ways to incorporate invariances in a neural network:

1. Training the network by examples

2. Data preprocessing

3. ”Hardwire” the invariance properties into the neural network

The first approach has no advantages but simplicity; such approach would re-

quire huge amounts of training data, which would be a problem in most cases.

Continuing the shape recognition example, it would be necessary to train the

network on a rectangle that is rotated by 0 degrees, x degrees, 2x degrees etc

(where x is the step size and depends on precision).

A modification of this approach called tangent prop learns invariances from ex-

amples, but is trained in a different way and does not require increased amount

of training data. All the approaches mentioned here are described in greater

detail below.

Tangent prop

Contrary8 to the usual training data, where the networks were trained on input

data and corresponding target data, in the case with tangent prop, not only

the input and target values themselves are presented to the network, but it is

also provided with information about how the variations of input data affect the

target function. This information is expressed by means of partial derivations.

Consider a neural network that should learn the target function f(x). It should

take x as input and produce f(x) at the output. The normal approach is to use

training data records of the structure 〈Input value,Target value〉, in this case

〈xi, f(xi)〉 (i denotes the number of training sample). Tangent prop uses other

training data, namely:

〈Input value,Target value,Change of target value with respect to change of input value〉,
8This section is based upon [Mitchell, 1997, pp. 347–349]
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in this case 〈xi, f(xi),
f(xi)
∂xi

〉.
The advantage of providing the first derivative information along with the raw

a) b) c)

Figure 2.21: Fitting values and derivatives with tangent prop. Let f be the

target function for which three examples x1, x2, x3 are known (a)). Based on

these points the learner might generate the hypothesis g (b)). If the derivatives

are also known, the learner can state the more accurate hypothesis h shown in

figure c) ([Mitchell, 1997, p. 347]).

input data is illustrated in figure 2.21. The task of the learner is to learn the

target function f(x) using the training data that consists of the value f(x) at

three different points (a)). A ”normal” neural network would learn the wrong

hypothesis g, since this hypothesis is the one with minimal deviation from train-

ing data, the one with smallest residuals. But it is obviously wrong (b)). If,

apart from the three values of f(x), also the derivatives f(x)
∂x at these three

points are provided, the situation changes crucially. Now the learner ”knows”

also the slopes (first derivative is the slope of a function at a certain point) of

the function at these three points, shown in figure 2.21 (c) as rectangles. Having

this information, a much more accurate approximation of f(x), denoted by h is

possible.

Tangent prop is capable of learning any invariances, which can be expressed as

differentiable functions. Apart from the data preprocessing, tangent prop has

a slightly different transfer function. A detailed treatment of tangent prop can

be found in Simard et al. [1992]
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Invariance through preprocessing

This method involves extraction of invariant features from the input data. In

particular, the so-called moments and the already mentioned Fourier descriptors

can be used for the particular task of shape recognition ([Bishop, 1996, pp. 322–

324] and Seul et al. [2000]).

Shared weights

This approach allows a neural network to recognize a shape correctly even if it is

translated (i.e. its location within the image is changed.9 Consider the network

Figure 2.22: Schematic architecture of a network for transition-invariant object

recognition in two-dimensional images. In a practical system there may be more

than two layers between the input and the outputs ([Bishop, 1996, p. 325]).

architecture shown in figure 2.22. The inputs to the network are given by the

intensities at each of the pixels in a two-dimensional array. Units in the first

and second layers are similarly arranged in two-dimensional sheets to reflect the
9This is not the only approach to achieve translation invariance. Other (probably simpler)

technique would firstly extract all the fragments of an image that may correspond to different

shapes, and secondly, process each fragment individually by means of a neural network. In this

case, the neural network doesn’t need to be capable of translation invariant shape recognition.

The process of extracting fragments from an image is called segmentation For a rigorous

treatment of segmentation, see [Jain et al., 1995, pp. 73–87]
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geometrical structure of the problem. Instead of having full interconnections

between adjacent layers, each hidden unit receives inputs only from units in a

small region in the previous layer, known as receptive field. This reflects the re-

sults of experiments in conventional image processing which have demonstrated

the advantage of extracting local features from an image and then combining

them together to form higher-order features. Note that it also imitates some

aspects of the mammalian visual processing system. The network architecture is

typically chosen so that there is some overlap between adjacent receptive fields.

The technique of shared weights can then be used to build in some degree of

translation invariance into the response of the network ([Bishop, 1996, p. 325]).

In the simplest case this involves constraining weights from each receptive field

to be equal to the corresponding weights from all of the receptive fields of the

other units in the same layer. Consider an object which falls within receptive

field shown at A in figure 2.22, corresponding to a unit in hidden layer 1, and

which produces some activation level in that unit. If the same object falls at

the corresponding position in receptive field B, then, as a consequence of the

shared weights, the corresponding unit in hidden layer 1 will have the same

activation level. The units in the second layer have fixed weights chosen so that

each unit computes a simple average of the activations of the units that fall

within its receptive field. This allows units in the second layer to be relatively

insensitive to moderate translations within the input image. However, it does

preserve some positional information thereby allowing units in higher layers to

detect more complex composite features. Typically, each successive layer has

fewer units than previous layers, as information on the spatial location of ob-

jects is gradually eliminated. This corresponds to the use of a relatively high

resolution to detect the presence of a feature in an earlier layer, while using a

lower resolution to represent the location of that feature in a subsequent layer.

The use of receptive fields can dramatically reduce the number of weights present

in the network compared with a fully connected architecture. This makes it

practical to treat pixel values in an image directly as inputs to a network. In

addition, the use of shared weights means that the number of independent pa-
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rameters in the network is much less than the number of weights, which allows

much smaller data sets to be used than would otherwise be necessary. Shared

weights networks have been used for the recognition of characters ([Bishop, 1996,

p. 326]).

Neural networks

A special type of neural networks, so-called higher-order networks in combina-

tion with shared weights can be used for incorporating translation invariance

into a neural network. Interested reader should refer to [Bishop, 1996, pp. 326–

329].

2.3 Time series processing with neural networks

This section is based upon Dorffner [1996].

2.3.1 Overview

Neural networks, being developed primarily for the purpose of pattern recog-

nition (classification), are not well suited for modelling time series because

the original applications of neural networks were concerned with detection of

patterns in arrays of measurements which do not change in time (Dorffner

[1996]).The dynamic nature of spatio-temporal data (i.e. data that has a spatial

and a temporal dimension) as time series are, requires introduction of additional

mechanisms. In particular, a neural network used for time series processing must

possess memory in one way or the other.

One way to supply the neural network with memory is to use a time window.

In this case, a certain number of past time series elements is provided to the

network as inputs and the network produces a prediction of the next element.

This approach is discussed in section 2.3.2.

Another way to provide memory to the neural network is to store past values of

output (context layer) or hidden (state layer) nodes in additional layers. These

additional layers are connected to the hidden layer in a similar way as the input
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layer. Networks implementing these approaches are treated in sections 2.3.4 and

2.3.5.

2.3.2 Multi-layer perceptron

Multi layer perceptron neural networks can be used for time series processing

and are similar to the autoregressive (AR) process described in section 1.4.1

(Dorffner [1996]). Suppose a certain function f(~y) : <n → <m has to be ap-

proximated by a MLP neural network. Formally, the approximation given by

the neural network is equal to (Dorffner [1996])

f̂MLP (~y) =




k∑

j=1

vjl transfer

(
n∑

i=1

wijpi − θj

)
− θl


 , l = 1, 2, . . . , m (2.62)

where transfer is the transfer function, k is the number of hidden units, vjl and

wij are weights and θi are threshold values.

If such a network has the architecture shown in figure 2.23 where the individual

input nodes are ”connected” to the elements of the time series 1, 2, . . . , p steps

in the past, it can be viewed as a special case of the AR model. This statement

will be explained in more detail below.

Every autoregressive model has the property that it approximates the time series

by applying a certain function to several elements of the time series in the past:

AR(p) : ŷt = f(yt−1, yt−2, . . . , yt−p) + εt (2.63)

In the ”classical” AR model discussed on p. 25, the function f(yt−1, yt−2, . . . , yt−p)

was equal to

f(yt−1, yt−2, . . . , yt−p) = µ +

(
p∑

i=1

γiyt−1

)
(2.64)

However, it is possible to take another function instead of this linear function

used in the ”classical” AR model, for example, the MLP approximation function

given in equation 2.62. Provided that the architecture is the one shown in figure

2.23, the MLP neural network works very similar to the classical AR model

with the only difference that it is more powerful due to the nonlinear function
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Figure 2.23: A feedforward neural network with time window as a non-linear

AR model (Dorffner [1996], [Bishop, 1996, p. 303])
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f(yt−1, yt−2, . . . , yt−p). Seen from this point of view, a neural network is a non-

linear AR model. Compared to classical AR models, such a neural network has

several advantages (Dorffner [1996]:

• A neural network can model much more complex underlying characteris-

tics of the series

• A neural network theoretically do not have to assume stationarity.

However, the neural network approach also has some disadvantages when com-

pared to classical AR model (Dorffner [1996]):

• Neural networks require large numbers of sample data, due to their large

number of parameters (weights)

• Neural networks can run into a variety of problems such as overfitting,

capture in local minima etc.

• do not necessarily include the linear case in a trivial way.

Due to the first problem, neural network approaches in real-world applications

are often ruled out in spite of a non-linear data, since training data is not

available to a sufficient degree. The second point addresses the choice of the

learning algorithm. Backpropagation is often not the most appropriate choice to

obtain optimal results. Examples of neural networks of this type used for time

series prediction purposes can be found in Chakraborty et al. [1992], Refenes

et al. [1991], Weigend et al. [1990] and White [1993] (Dorffner [1996]).

2.3.3 Time-delay neural network

Another mechanism to supply neural networks with ”memory” to deal with the

temporal dimension is the introduction of time delays on connections. In other

words, through delays, inputs arrive at hidden units at different points in time,

thus being ”stored” long enough to influence subsequent inputs. This approach,

called a time-delay neural network (TDNN) has been extensively employed in

speech recognition (e.g. Waibel [1989]). Formally, time delays are identical to
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time windows and can thus be viewed as autoregressive models as well. An

interesting extension is the introduction of time delays also on connections be-

tween hidden and output units, providing additional, more ”abstract” memory

to the network (Dorffner [1996]).

2.3.4 Jordan networks

Figure 2.24 shows another approach for processing time series using neural net-

works, the so-called Jordan network. It is a multi-layer perceptron with one

hidden layer and a feedback loop from the output layer to an additional input

layer called context layer. Each node in the context layer is connected to itself

via self-recurrent loops with a weight smaller than 1 (Dorffner [1996]).

Hence, a Jordan network takes into account not only past time series elements,

but also its own forecasts. This property has often given rise to the argument

that recurrent networks can exploit information beyond a limited time win-

dow. However, in practice this cannot really be exploited. If the weight of a

connection to a context node is close to 1, the node (if it uses a sigmoid trans-

fer function) quickly saturates to maximum activation, where additional inputs

have little effect. If the weight is very small in comparison to 1, the influence of

past estimates quickly goes to 0 (Dorffner [1996]).

The Jordan networks can be seen as an extension of the ARMA models discussed

in section 1.4.1 (Dorffner [1996]). In spite of the advantages of this approach

(potentially higher power), there also exist limitations for applicability of Jordan

networks to real-world time series already mentioned above (Dorffner [1996]).

2.3.5 Elman networks

An Elman network (figure 2.25) possesses an additional layer called state layer,

by means of which the outputs of the hidden nodes are fed back to the network.

Although the Elman network in the original form has only limited modelling

capabilities, it can be extended to perform as a universal state-space model10.
10A state space model describes (and forecasts) time series under the assumption that the

next element of the time series can be predicted by the state the system currently is in, no
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Figure 2.24: Jordan network (Dorffner [1996])

Real-world applications of Elman networks are described in Gordon et al. [1991],

Dorffner et al. [1994] and Debar and Dorizzi [1992].

2.3.6 Multi-recurrent networks

Ulbricht [1994] and Ulbricht [1995] has given an extensive overview of addi-

tional types of recurrencies, time-windows and time delays in neural networks.

By combining several types of feedback and delay one obtains the general mul-

tirecurrent network (MRN), depicted in figure 2.26 (Dorffner [1996]).

This type of neural network has several remarkable properties. Firstly, feedback

from hidden and output layers are permitted. Secondly, all input layers (the

actual input, the state and the context layer) are permitted to be extended by

time-delays, such as to introduce time windows over past instances of the cor-

responding vectors. Thirdly, like in the Jordan network, self-recurrent loops in

the state layer can be introduced. The weights of these loops, and the weights

of the feedback copies resulting from the recurrent one-to-one connections, are

matter how the state was reached. All the history of the series necessary for producing the

next element can be expressed by one state vector (Dorffner [1996]).
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Figure 2.25: An example of an Elman network (Dorffner [1996])

Figure 2.26: A multi-recurrent network (Ulbricht [1995], Dorffner [1996])
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chosen such as to scale the theoretically maximum input to each unit in the

state layer 1, and to give more or less weight to the feedback connections of the

self-recurrent loops, respectively (Dorffner [1996]).

If, for example, 75 % of the total activation of a unit in the state layer comes

from the hidden layer feedback, and 25 % comes from self-recurrency, the state

layer will tend to change considerably at each time step. If, on the other hand,

only 25 % come from the hidden layer feedback, and 75 % from the self-recurrent

loops the state vector will tend to remain similar to the one at the previous time

step (Dorffner [1996]).

Ulbricht [1995] speaks of flexible and sluggish state spaces, respectively. By

introducing several state layers with different such weighting schemes, the net-

work can exploit both the information of rather recent time steps and a kind

of average of several past time steps, i.e. a longer, averaged history (Dorffner

[1996]).

It is clear that a full-fletched version of the MRN contains a very large number

of parameters (weights) and requires even more care than the other models dis-

cussed above. Several empirical studies (Ulbricht [1994], Ulbricht et al. [1996])

have shown, however, that for real-world applications, some versions of the

MRN can significantly outperform most other, more simple, forecasting meth-

ods. The actual choice of feedback, delays and weightings still depends largely

on empirical evaluations, but there are iterative algorithms similar to one used

for determination of the parameters of the ARMA model (figure 1.7, p. 28) that

appear applicable to this type of network (Dorffner [1996]).

Another advantage of self-recurrent loops becomes evident in applications where

patterns in the time series can vary in time scale. This phenomenon is called time

warping, and is especially known in speech recognition, where different speech

patterns can vary in length and relationships between segments dependent on

speaking speed and intonation (Morgan and Scotfield [1991]). In autoregressive

models with fixed time windows, such distorted patterns lead to vectors that

do not share sufficient similarities to be classified correctly. This is sometimes

called the temporal invariance problem - the problem of recognizing temporal
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patterns independent of their duration and temporal distortion. In a recurrent

neural network with self-recurrent loops such invariances can be dealt with, es-

pecially when sluggish state spaces are employed. If state vector is forced to be

similar at subsequent time steps, events can be treated equally (or similarly)

even when they are shifted along temporal dimension (Dorffner [1996]).

2.3.7 Other network architectures

While the most important neural network approaches to time series processing

have been described in previous sections, there exists a variety of many other

design approaches, several of which are listed below (Dorffner [1996]):

• Many time series applications are tackled with fully recurrent networks,

or networks with recurrent architectures different from the ones already

discussed (e.g. Rementeria et al. [1994]). Special learning algorithms for

arbitrary recurrent networks have been devised, such as backpropagation in

time (Rumelhart et al. [1986]) and real-time recurrent learning (Williams

and Zipser [1989], Dorffner [1996]).

• Many authors use a combination of neural networks with so-called hidden

Markov models (HMM) for time series and signal processing. HMMs are

related to finite state automata and describe probabilities for changing

from one state to the other. Detailed treatment of this topic can be found

in Bourlard and Morgan [1989] and Bengio [1995](Dorffner [1996]).

• Unsupervised neural network learning algorithms, such as the self-organizing

map, can also be applied in time series processing, both in forecasting

(Baumann and Germond [1993]) and classification (Roberts and Tarassenko

[1992]). The latter application constitutes an instance of so-called spatio-

temporal clustering, i.e. the unsupervised classification of time series into

clusters - in this case the clustering of sleep-EEG into sleep stages (Dorffner

[1996]).

• A number of authors have investigated the properties of neural networks

viewed as dynamical systems including chaotic attractor dynamics (Kolen
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[1994], Port et al. [1995]).



Chapter 3

Financial time series

prediction and ANNs

3.1 Historical Background

The history1 of neural network development can be divided into five main stages,

spanning over 150 years. These stages are shown in figure 3.1, where key research

developments in computing and neural networks are listed along with evidence

of the impact these developments had on the business community. Much of the

preliminary research and development was achieved during stage 1 which here

is considered to be pre-World War II (i.e. prior to 1945). During this time most

of the foundations for future neural network research had been formed. The

basic design principles of analytic engines had been invented by Charles Bab-

bage in 1834, which became the forerunner to the modern electronic computer.

The ability of these analytic engines and adding machines to automate tedious

calculations led to their widespread use by 1900 (the US government used such

machines for the 1890 national census), and International Business Machines

(IBM) was founded in 1914 to capture this market. Meanwhile researchers in

psychology had been exploring the human brain and learning. William James’
1This section is based upon explanations in Smith and Gupta [2000].

89
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1890 book Psychology discussed some of the early insights researchers had into

the nature of brain activity.

Between the two World Wars, Alan Turing investigated computing devices

which used the human brain as a paradigm, and the field of artificial intelligence

was born. This first stage of preliminary research concludes with the first basic

attempts to mathematically describe the workings of the human brain. McCul-

loch and Pitts’ (1943) paper entitled A logical calculus of the ideas immanent in

nervous activity proposed a simple neuron structure with weighted inputs and

neurons which are either ”on” or ”off”. At this stage, however, these neural

networks could not learn, and the lack of suitable computing resources stifled

experimentation.

Stage 2 is characterised by the age of computer simulation. In 1946, Wilkes de-

signed the first operational stored-program computer. Over the ensuing years,

the development of electronic computers progressed rapidly, and in 1954 General

Electric Company became the first corporation to use a computer when they

installed a UNIVAC I to automate the payroll system. The advances in com-

puting enabled neural network researchers to experiment with their ideas, and

in 1949 Donald Hebb wrote The Organization of Behaviour, where he proposed

a rule to allow neural network weights to be adapted to reflect the learning pro-

cess explored by Pavlov. In 1954, Marvin Minsky built the first neurocomputer

based on these principles. In the summer of 1956, the Dartmouth Summer Re-

search Project was held and attracted the leading researchers at the time. The

field of neural networks was officially launched at this meeting. Rosenblatt’s

Perceptron model soon followed in 1957, and many simple examples were used

to show the learning ability of neural networks. By this stage the fields of ar-

tificial intelligence and neural networks were causing much excitement amongst

researchers, and the general public was soon to become captivated by the idea of

”thinking machines”. In 1962, Bernard Widrow appeared on the US documen-

tary program Science in Action and showed how his neural network could learn

to predict the weather, blackjack, and the stock market. For the remainder of

the 1960s this excitement continued to grow.
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Figure 3.1: The five stages of neural network research development and its

business impact (Smith and Gupta [2000])
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Then in 1969 a book was published which severely dampened this enthusiasm.

The book was Minsky and Papert’s Perceptrons (Minsky and Papert [1969]),

that proved mathematically that perceptrons are incapable of learning any prob-

lem containing data that are linearly inseparable. The consequence of their

book was that much neural network research ceased. This is the third stage,

commonly called the ”quiet years” a from 1969 until 1982. During this time,

however, there were significant developments in the computer industry. In 1971

the first microprocessor was developed by the Intel Corporation. Computers

were starting to become more common in businesses worldwide, and several

computer and software companies were formed during the mid-seventies. SPSS

Inc. and Nestor Inc. in 1975 and Apple Computer Corporation in 1977 are

a few examples of companies which formed then, and later became heavily in-

volved in neural networks. In 1981, IBM introduced the IBM PC which brought

computing power to businesses and households across the world. While these

rapid developments in the computing industry were occurring, some researchers

started looking at alternative neural network models which might overcome the

limitations observed by Minsky and Papert. The concept of self-organisation

in the human brain and neural network models was explored by Willshaw and

von der Malsburg, and consolidated by Kohonen in 1982. This work helped to

revive interest in neural networks, as did the efforts of Hopfield who was looking

at the concepts of storing and retrieving memories. Thus, by the end of this

third stage, research into neural networks had diversified, and was starting to

look promising again.

From 1983 until 1990 marks the 4th stage where neural network research blos-

somed. In 1983 the US government funded neural network research for the first

time through the Defence Advanced Research Projects Agency (DARPA), pro-

viding testament to the growing feeling of optimism surrounding the field. An

important breakthrough was then made in 1985 which impacted on the future of

neural networks considerably. Backpropagation was discovered independently

by two researchers which provided a learning rule for neural networks which

overcame the limitations described by Minsky and Papert. In actual fact, back-
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propagation had been proposed by Werbos while he was a graduate student

some 10 years earlier, but remained undiscovered until after LeCun and Parker

had published their work. The backpropagation algorithm enabled any complex

problem to be learnt without the limitations of Perceptrons. Within years of

its discovery the neural network field grew dramatically in size and momentum.

Rumelhart and McClelland’s (1986) book, ”Parallel Distributed Processing”,

became the neural network ”bible”. In 1987, the Institute of Electrical and

Electronic Engineers (IEEE) held the 1st International Conference on Neural

Networks, and these conferences have been held annually ever since. Many neu-

ral network journals emerged over the next few years, with notable ones being

Neural Networks in 1988, Neural Computation in 1989, and IEEE Transactions

on Neural Networks in 1990. During this stage of rapid growth, the business

world remained fairly untouched by neural networks. A few companies spe-

cialising in neural networks formed such as NeuralWare Inc. in 1987, and the

reputation of neural networks in the business community was beginning to grow,

but it was not until the next stage that neural network made their real and last-

ing impact in business. In 1991, the banks started to use neural networks to

make decisions about loan applicants and speculate about financial prediction.

This marks the start of the 5th stage. Within a couple of years many neural

network companies had been formed including Neuraltech Inc. in 1993 and

Trajecta Inc. in 1995. Many of these companies produced easy-to-use neu-

ral network software containing a variety of architectures and learning rules. A

survey of neural network software products available in 1993 listed over 50 prod-

ucts, the majority of which were designed to be run on a PC under Microsoft

Windows. The impact on business was almost instantaneous. By 1996, 95% of

the top 100 banks in the US were utilising intelligent techniques including neu-

ral networks. Within competitive industries like banking, finance, retail, and

marketing, companies realised that they could use these techniques to help give

them a ”competitive edge”. In 1998, IBM announced a company-wide initiative

for the estimated $70 billion business intelligence market. Research during this

5th stage still continues, but it is now more industry driven. Now that the busi-
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Figure 3.2: Application domains of neural networks (Wong et al. [1997a])

ness world is becoming increasingly dependent upon intelligent techniques like

neural networks to solve a variety of problems, new research problems are emerg-

ing. Researchers are now devising techniques for extracting rules from neural

networks, and combining neural networks with other intelligent techniques like

genetic algorithms, fuzzy logic and expert systems. As more complex business

problems are tackled, more research challenges are created.

3.2 Application of neural networks in today’s

business

While the previous section outlined the past of neural networks in business, this

section describes the present day of ANNs. According to Wong et al. [1997a],

the most frequent application domains of ANN are productions/operations (53.5

%) and finance (25.4 %; Wong et al. [1997a], Zekic [1998], figure 3.2) According

to Wong et al. [1997b], approximately 95 % of reported neural network business

application studies utilise multilayered feedforward neural networks with the
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backpropagation learning rule (MLP/EBP2).

Apart from MLP/EBP, Hopfield networks and self-organizing maps are of prac-

tical importance in the financial domain (Smith and Gupta [2000]).

According to Zekic (Zekic [1998]), who analysed various ANNs in the business

domain, ANNs used for

• predicting stock performance

• recommendation for trading

• classification of stocks

• predicting price changes of stock indexes

• stock price prediction

• modeling the stock performance

• forecasting the performance of stock prices

dominate the research. In most analyzed applications, the NN results outper-

form statistical methods, such as multiple linear regression analysis, discrimi-

native analysis and others (Zekic [1998]).

3.3 Examples of ANNs in finance

3.3.1 Example 1

The first example of the application of neural networks to financial time series

prediction is the system developed by Tino et al. [2000].

The system described is used for simulation of option trading with FTSE and

DAX options. The options are traded using a delta-neutral trading strategy,

i.e. the profit of a trading action (buying or selling options) depends on correct

prediction of the volatility of the FTSE and DAX index in future. Thus, the

system predicts the volatility.
2MLP/EBP refers to a multi-layer perceptron trained with stochastic gradient descent

backpropagation learning algorithm presented in section 2.1.6.
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Figure 3.3: Sliding window technique used in the experiment of Tino et al.

[2000]

In order to accommodate for changing properties of the time series, a sliding

window technique is applied (see figure 3.3). The neural networks and some

other algorithms are trained on the training set of 500 daily volatility values.

Then, every algorithm is applied on a validation set of 125 days, i.e. the al-

gorithms are used to ”trade” with options in these 125 days. Finally, the best

performing algorithm is chosen and applied to a test set of 5 days. Then, the

sliding window is shifted by 5 days and the process begins again (only the profits

on the test sets are counted towards overall profit of the prediction system).

There are several prediction techniques incorporated in the system, among them

two neural networks. Both are trained on 1, 3, 6 or 10 past volatility differences.

One is used to predict the volatility difference for the next day and the other to

predict the direction of the volatility difference (up or down).



CHAPTER 3. FINANCIAL TIME SERIES PREDICTION AND ANNS 97

The neural networks outperform the GARCH model in most cases. However,

the most interesting result of the study of Tino et al. [2000] is the performance

of their so-called Simple class:

Our idea is to use yet another model class, Simple, that is a

small collection of simple, fixed predictors requiring no training on

the training set. A suitable candidate model to be applied on the

test set is selected on the validation set. The class Simple avoids us-

ing the old data in the sliding window. Of course, the price to pay is

the fixed nature of the models in Simple. However, in financial pre-

diction tasks, simple, short memory models often outperform more

sophisticated predictors. Our choice of models for the class Simple is

a collection of four simple-minded predictors operating on the series

of volatility differences quantized using the two-symbol scheme: al-

ways predict 1 (decrease), always predict 2 (increase), copy the last

symbol and revert the last symbol (i.e. predict the other symbol).

This simple-minded model class outperforms all other prediction techniques

applied in this experiment (Markov models, variable length Markov models,

fractal classification machines, neural networks, GARCH models):

As typical in financial prediction tasks, simple-minded predictors

in the class Simple are difficult to beat by more complicated models

and should definitely be considered in studies like this one.

It is noticeable that in Tino et al. [2000] the profit after subtraction of transac-

tion costs is taken into account. The conclusion of such results is that prediction

accuracy (which is certainly better at neural networks and GARCH models than

in the Simple class) does not always guarantee a profitable trading. It appears

that prediction accuracy and profitability of the trading strategy predictions are

two different tasks.
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Figure 3.4: Structure of the system described in Chenoweth and Obradovic

[1996]

3.3.2 Example 2

The second example of ANNs’s application in finance is the experiment de-

scribed in Chenoweth and Obradovic [1996].

This paper investigates the behaviour of a system for prediction of the S&P

500 index. The system structure is given in figure 3.4. The feature selection

happens by means of sequential search techniques (see p. 68) and a ranking

method which determines the best feature subset. The ”quality” of feature sub-

set is expressed in terms of class separation. Chenoweth and Obradovic [1996]

use Euclidean, Patrick-Fisher, Mahalanobis and Bhattacharyya distances for

measuring class separation. All of these measures are - with respect to the pur-

pose they serve - equivalent to the Fisher’s criterion presented in appendix I
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and defined in equation I.36 on page 187.

The preprocessed data are passed to the data filter. It reduces noise and splits

the data to the two neural networks. The noise reduction is done by discarding

the data record (pattern), if the absolute return (returns are part of each pat-

tern, see p. 21) is smaller than a certain threshold value. Thus, small changes

are treated as noise and discarded.

Patterns which are not discarded are used to train the neural networks. If the

corresponding return (”raw”, not absolute return) is greater than the threshold

value, it is fed to the ”up” ANN, if it is lower than ((−1) · threshold value), then

it is fed to the ”down” ANN.

In order to accommodate for non-stationarity, the sliding window technique is

used in this study, too. Unlike the one in Tino et al. [2000] who use a step size

of 5, the step size used in the study of Chenoweth and Obradovic [1996] is 1.

When trained, the neural networks are used to form a return prediction for the

next day. These two predictions are used as input for the rule base, which then

generates a buy or sell recommendation.

The important outcome of this study is the fact that dual-ANN approach out-

performs a technique, where only one ANN is used. Furthermore, the efficient

preprocessing seems to play an essential role in efficient prediction formation.

Using their ranking feature selection algorithm, they extract few (6 to 10) fea-

tures out of a pool of up to 30 candidate features.

3.3.3 Example 3

The last example will be a neural network presented in Terna [2000].

In this experiment, several neural networks are used to simulate the behaviour

of a small economic system, consisting of 20 participants (10 buyers and 10

sellers). Equipped with a minimal set of rules and a neural network for learning

to adapt to the environment, these agents behave in the following way [Terna,

2000, p. 5]:

”At every simulation step (i.e., a tick of the simulation clock), ar-

tificial consumers look for a vendor; all the consumers and vendors
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Figure 3.5: Design of the neural network in the agents presented in the study

of Terna [2000]

are randomly matched at each step. An exchange occurs if the price

asked by the vendor is lower than the level fixed by the consumer.

If a consumer has not been buying for one or more than one step, it

raises its price level by a fixed amount according to the counter rule

and the sensitivity parameter introduced below. It acts in the oppo-

site way if it has been buying and its inventory is greater than one

unit. A simulated vendor behaves in a symmetric way (but without

a sensitivity parameter): it chooses the offer price randomly within

a fixed range. If the number of steps for which it has not been sell-

ing is greater than one, it decreases the minimum and maximum

boundaries of this range, and vice versa if it has been selling.”
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The neural networks used in the agents (sellers and buyers) have two output

types

1. actions to be performed and

2. guesses about the effects of those actions.

Both the targets necessary to train the network from the point of view of the

actions and those connected with the effects are built in a crossed way, origi-

nating the name Cross Targets (CT). The former are built in a consistent way

with the outputs of the network concerning the guesses on the effects, in order

to develop the capability to decide actions close to the expected results. The

latter are similarly built with the outputs of the network concerning the guesses

of the actions, in order to improve the agent’s capability of estimating the effects

emerging from the actions that the agent herself is deciding. The method of

CTs, introduced to develop economic subjects’ autonomous behaviour, can also

be interpreted as a general algorithm useful for building behavioral models with-

out using constrained or unconstrained optimization techniques. The kernel of

the method, conveniently based upon artificial neural networks, is learning by

guessing and doing: control capabilities of the subject can be developed without

defining either goals or maximizing objectives. Figure 3.5 describes a CT agent

learning and behaving in a CT scheme. The agent has to produce guesses about

its own actions and related effects, on the basis of an information set (the input

elements are I1, . . . , Ik). Remembering the requirement of internal consistency,

targets in learning process are:

1. on one side, the actual effects - measured through accounting rules - of

the actions made by the simulated subject;

2. on the other side, the actions needed to match guessed effects. In the last

case we have to use inverse rules, even though some problems arise when

the inverse function is undetermined.

The field of agent based computational finance is a highly interesting and actively

researched area. Of all ANN application in finance, it is perhaps the one which
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Figure 3.6: Design process of a neural network based financial time series pre-

diction system (Kaastra and Boyd [1996]).

can provide the deepest insights into the fundamental nature of the economy.

For a rigorous treatment of application of neural networks in this context, refer

to Beltratti et al. [1996].

3.4 Design of ANNs in finance

The methodology described in scope of this section is based upon Kaastra and

Boyd [1996]. The design of a neural network successfully predicting a financial

time series is a complex task. The individual steps of this process are shown in

figure 3.4 and listed below:

1. Variable selection

2. Data collection

3. Data preprocessing

4. Data partitioning

5. Neural network design

6. Evaluation of the system

7. Training the ANN
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8. Implementation

Detailed description of individual steps is given below.

3.4.1 Step 1: Variable selection

Success in designing a neural network depends on a clear understanding of the

problem (Nelson and Illingworth [1991]). Knowing which input variables are

important in the market being forecasted is critical. This is easier said than

done because the very reason for relying on a neural network is for its powerful

ability to detect complex nonlinear relationships among a number of different

variables. However, economic theory can help in choosing variables which are

likely important predictors. At this point in the design process, the concern is

about the raw data from which a variety of indicators will be developed. These

indicators will form the actual inputs to the neural network (Kaastra and Boyd

[1996]).

The financial researcher interested in forecasting market prices must decide

whether to use both technical and fundamental economic inputs from one or

more markets. Technical inputs are defined as lagged3 values of the depen-

dent variable4 or indicators calculated from the lagged values. Fundamental

inputs are economic variables which are believed to influence the dependent

variable. The simplest neural network model uses lagged values of the depen-

dent variable(s) or its first difference as inputs. Such models have outperformed

traditional ARIMA-based models in price forecasting, although not in all stud-

ies (Sharda and Patil [1994], Tang et al. [1990]). A more popular approach is

to calculate various technical indicators which are based only on past prices of

the market being forecasted (Deboeck and Cader [1994]). As an additional im-

provement, intermarket data can be used since the close link between all kinds

of markets, both domestically and internationally, suggests that using techni-

cal inputs from a number of interrelated markets should improve forecasting
3”Lagged” means an element of the time series in the past. For example, at time t, the

values yt−1,yt−2,yt−p are said to be lagged values of the time series y.
4Dependent variable is the variable whose behavior should be modelled or predicted

([Dougherty, 1992, p. 54]).
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performance. For example, intermarket data such as the Deutsche Mark/Yen

and Pound cross rates and interest rate differentials could be used as neural

network inputs when forecasting the D-Mark. Fundamental information such

as the current account balance, money supply or wholesale price index may also

be helpful (Kaastra and Boyd [1996]).

The frequency of the data depends on the objectives of the researcher. A typical

off-floor trader in the stock or commodity futures markets would likely use daily

data if designing a neural network as a component of an overall trading system.

An investor with a longer term horizon may use weekly or monthly data as

inputs to the neural network to formulate the best asset mix rather than using

a passive buy and hold strategy. An economist forecasting the gross domestic

product (GDP), unemployment or other broad economic indicators would likely

use monthly or quarterly data (Kaastra and Boyd [1996]).

3.4.2 Step 2: Data collection

The researcher must consider cost and availability when collecting data for the

variables chosen in the previous step. Technical data is readily available from

many vendors at a reasonable cost whereas fundamental information is more

difficult to obtain. Time spent collecting data cannot be used for preprocessing,

training and evaluating network performance. The vendor should have a repu-

tation of providing high quality data; however, all data should still be checked

for errors by examining day to day changes, ranges, logical consistency (e.g.

high greater than or equal to close, open greater or equal to low) and missing

observations (Kaastra and Boyd [1996]).

Missing observations which often exist, can be handled in a number of ways. All

missing observations can be dropped or a second option is to assume that the

missing observations remain the same by interpolating or averaging from nearby

values. Dedicating an input neuron to the missing observations by coding it as a

one if missing and zero otherwise is also often done (Kaastra and Boyd [1996]).

When using fundamental data as an input in a neural network four issues must

be kept in mind. First, the method of calculating the fundamental indicator
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should be consistent over the time series. Second, the data should not have

been retroactively revised after its initial publication as is commonly done in

databases since the revised numbers are not available in actual forecasting.

Third, the data must be appropriately lagged as an input in the neural network

since fundamental information is not available as quickly as market quotations.

Fourth, the researcher should be confident, that the source will continue to

publish the particular fundamental information or other identical sources are

available (Kaastra and Boyd [1996]).

3.4.3 Step 3: Data preprocessing

As in most other neural network applications, data preprocessing is crucial for

achieving a good prediction performance when applying neural networks for fi-

nancial time series prediction. The input and output variables for which the

data was collected are rarely fed into the network in raw form. At the very

least, the raw data must be scaled between the upper and lower bounds of the

transfer functions (usually between zero and one or minus one and one; Kaastra

and Boyd [1996]).

Two of the most common data transformations in both traditional and neural

network forecasting are first differencing and taking log5 of a variable. First

differencing, or using changes in a variable, can be used to remove a linear

trend from the data. Logarithmic transformation is useful for data which can

take on both small and large values. Logarithmic transformations also convert

multiplicative or ratio relationships to additive which is believed to simplify and

improve the network training (Masters [1993]; Kaastra and Boyd [1996]).

Another popular data transformation is to use ratios of input variables. Ratios

highlight important relationships (e.g. hog/corn, financial statement ratios)

while at the same time conserving degrees of freedom because fewer input neu-

rons are required to code the independent variables (Kaastra and Boyd [1996]).

Besides first differences, logs and ratios, technical analysis can provide a neural

network with a wealth of indicators including a variety of moving averages, os-
5”log” means ”logarithm”.
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cillators, directional movement and volatility filters. It is a good idea to use mix

of different indicators to reduce variable redundancy and provide network with

the ability to adapt to changing market conditions through periodic retraining

(Kaastra and Boyd [1996]).

Smoothing both input and output data by using either simple or exponential

moving averages is often employed. Empirical work on testing the efficient mar-

ket hypothesis has found that prices exhibit time dependency or positive auto-

correlation while price changes around a trend are somewhat random (Tomek

and Querin [1984]). Therefore, attempting to predict price changes around the

trend by using either unfiltered prices or price changes as inputs may prove to be

difficult. Using moving averages to smooth the independent variables and fore-

casting trends may be a more promising approach (Kaastra and Boyd [1996]).

Sampling or filtering of data refers to removing observations from the training

and testing sets to create a more uniform distribution. The type of filtering em-

ployed should be consistent with the objectives of the researcher. For example,

a histogram of price changes for a commodity would reveal many small changes

from which an off-floor speculator cannot profit after deducting realistic execu-

tion costs. However, this dense region of the distribution will greatly impact

the training of the neural network since small price changes account for the ma-

jority of the training facts. The network minimizes the sum of squared errors

(or other error function) over all the training facts. By removing these small

price changes, overall trading performance can be improved since the network

specializes on the larger, potentially profitable price changes. It is possible for

trading systems to be unprofitable even if the neural network predicted 85 % of

the turning points, as the turning points may be only small unimportant price

changes (Deboeck [1994]). On the other hand, a floor trader holding positions

overnight is likely interested in these small price changes. The researcher must

be clear on what exactly the neural network is supposed to learn. Another ad-

vantage of filtering is a decrease in the number of training facts which allows

testing of more input variables, random starting weights, or hidden neurons

rather than training large data sets (Kaastra and Boyd [1996]).
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In practice, data preprocessing involves much trial and error. One method to

select appropriate input variables is to test various combinations. For example,

a ”top 20” list of variables consisting of a variety of technical indicators could

be pretested ten at a time with each combination differing by two or three

variables. Although computationally intensive, this procedure recognizes the

likelihood that some variables may be excellent predictors only when in com-

bination with other variables. Chaos theory and statistical tests cannot make

such a determination. Also, the top 20 list can be modified over time as the

researcher gains experience on the type of preprocessing that works for his/her

application. This approach is especially useful if the training set is small rel-

ative to the number of parameters (weights) which is likely the case if all 20

input variables are presented to the neural network at once (Kaastra and Boyd

[1996]).

3.4.4 Step 4: Data partitioning

Common practice is to divide the time series into three distinct sets called the

training, testing and validation6 (out-of-sample) sets. The training set is the

largest set and is used by the neural network to learn the patterns present in

the data. The testing set, ranging in size from 10 % to 30 % of the training set,

is used to evaluate the generalization ability of a supposedly trained network.

The researcher would select the network(s) which perform best on the testing

set. A final check on the validation set chosen must strike a balance between ob-

taining a sufficient sample size to evaluate a trained network and having enough

remaining observations for both training and testing. The validation set should

consist of the most recent contiguous observations. Care must be taken not to

use the validation set as a testing set by repeatedly performing a series of train-

test-validation steps and adjusting the input variables based on the network’s

performance on the validation set (Kaastra and Boyd [1996]).

The testing set can be either randomly selected from the training set or consist
6In some of studies (e.g. in the one presented in section 3.3.1), the term testing set is used

as a name for the validation set.
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Figure 3.7: A walk-forward sliding windows testing routine (Kaastra and Boyd

[1996]).

of a set of observations immediately following the training set. The advantage

of randomly selecting testing facts is that the danger of using a testing set char-

acterized by one type of market is largely avoided. For example, a small testing

set may only consist of prices in a strong uptrend. The testing set will favour

networks which specialize on strong uptrends at the expense of networks which

generalize by performing well on both uptrends and downtrends. The advantage

of using the observations following the training set as testing facts is that these

are the most recent observations (excluding the validation set) which may be

more important than older data (Kaastra and Boyd [1996]).

The randomly selected testing facts should not be replaced in the training set

because this would bias the ability to evaluate generalization especially if the

testing set is large relative to the training set (e.g. 30 %). A deterministic

method, such as selecting every nth observation as a testing fact, is also not

recommended since it can result in cycles in the sampled data due solely to the

sampling technique employed (Masters [1993]; Kaastra and Boyd [1996]).

A more rigorous approach in evaluating neural networks is to use a walk-forward

testing routine also known as either sliding or moving window testing. Popular

in evaluating commodity trading systems, walk-forward testing involves divid-

ing the data into a series of overlapping training-testing-validation sets. Each
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set is moved forward through the time series as shown in figure 3.7. Walk-

forward testing attempts to simulate real-life trading and tests the robustness

of the model through its frequent reatraining on a large out-of-sample data set.

In walk-forward testing, the size of the validation set drives the retraining fre-

quency of the neural network. Frequent retraining is more time consuming, but

allows the network to adapt more quickly to changing market conditions. The

consistency or variation of the results in the out-of-sample sets is an important

performance measure (Kaastra and Boyd [1996]).

3.4.5 Step 5: Neural network design

There are an infinite number of ways to construct a neural network. Neurody-

namics and architecture are two terms used to describe the way in which a neural

network is organized. The combination of neurodynamics and architecture de-

fine the neural networks’s paradigm. Neurodynamics describe the properties of

an individual neuron such as its transfer function and how the inputs are com-

bined (Nelson and Illingworth [1991]). A neural network’s architecture defines

its structures including the number of neurons in each layer and the number

and type of interconnections (Kaastra and Boyd [1996]).

The number of input neurons is one of the easiest parameters to select once

the independent variables have been preprocessed because each independent

variable is represented by its own input neuron. The tasks of selection of the

number of hidden layers, the number of neurons in the hidden layers, the num-

ber of output neurons as well as the transfer functions are much more difficult

(Kaastra and Boyd [1996]).

Number of hidden layers

The hidden layer(s) provide the network with its ability to generalize. In prac-

tice, neural networks with one and occasionally two hidden layers are widely

used and have performed very well. Increasing the number of hidden layes also

increases computation time and the danger of overfitting which leads to poor

out-of-sample forecasting performance. Overfitting occurs when a forecasting
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model has too few degrees of freedom. In other words, it has relatively few

observations in relation to its parameters and therefore it is able to memorize

individual points rather than learn the general patterns. In the case of neu-

ral networks, the number of weights, which is inexorably linked to the number

of hidden layers and neurons, and the size of the training set (number of ob-

servations) determine the likelihood of overfitting (Masters [1993], Baum and

Haussler [1989]). The greater the number of weights relative to the size of the

training set, the greater the ability of the network to memorize idiosyncrasies of

individual observations. As a result, generalization for the validation set is lost

and the model is of little use in actual forecasting (Kaastra and Boyd [1996]).

Therefore, it is recommended that all neural networks should start with prefer-

ably one or at most two hidden layers. If a four-layer neural network (i.e. two

hidden layers) proves unsatisfactory after having tested multiple hidden neu-

rons using a reasonable number of randomly selected starting weights, then the

researcher should modify the input variables a number of times before adding

a third hidden layer. Both theory and virtually all empirical work suggest that

networks with more than four layers will not improve the results (Kaastra and

Boyd [1996]).

Number of hidden neurons

Despite its importance, there is no ”magic” formula for selecting the optimum

number of hidden neurons. Therefore researchers fall back on experimentation.

However, some rules of thumb have been advanced. A rough approximation

can be obtained by the geometric pyramid rule proposed by Masters (Masters

[1993]). For a three-layer network with n input neurons and m output neurons,

the hidden layer would have
√

n×m neurons. The actual number of hidden

neurons can still range from one-half to two times the geometric pyramid rule

value depending on the complexity of the problem. Baily and Thompson [1990]

suggest that the number of hidden neurons in a three-layer neural network

should be 75 % of the number of input neurons. Katz [1992] indicates that

an optimal number of hidden neurons will generally be found between one-half
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to three times the number of input neurons. Ersoy [1990] proposes doubling

the number of hidden neurons until the network’s performance on the testing

set deteriorates. Klimasauskas [1993] suggests that there should be at least five

times as many training facts as weights, which sets an upper limit on the number

of input and hidden neurons (Kaastra and Boyd [1996]).

It is important to note that the rules which calculate the number of hidden

neurons as a multiple of the number of input neurons implicitly assume that

the training set is at least twice as large as the number of weights and preferably

four or more times as large. If this is not the case, then these rules of thumb can

quickly lead to overfitted models since the number of hidden neurons is directly

dependent on the number of input neurons (which in turn determine the number

of weights). The solution is to either increase the size of the training set or, if

this is not possible, to set an upper limit on the number of input neurons so that

the number of weights is at least half of the number of training facts. Selection

of input variables becomes even more critical in such small networks since the

luxury of the presenting the network with a large number of inputs and having

it ignore the irrelevant ones has largely disappeared (Kaastra and Boyd [1996]).

Selecting the best number of hidden neurons involves experimentation. Three

methods often used are the fixed, constructive and destructive. In the fixed

approach, a group of neural networks with different numbers of hidden neurons

are trained and each is evaluated on the testing set using a reasonable number

of randomly selected starting weights. The increment in the number of hidden

neurons may be one, two or more depending on the computational resources

available. Plotting the evaluation criterion (e.g. sum of squared errors) on the

testing set as a function of the number of hidden neurons for each neural network

generally produces a bowl shaped error graph. The network with the least error

found at the bottom of the bowl is selected because it is able to generalize best.

This approach is time consuming, but generally works very well (Kaastra and

Boyd [1996]).

The constructive and destructive approaches involve changing the number of

hidden neurons during training rather than creating separate networks each
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with a different number of hidden neurons, as in the fixed approach. Many

commercial neural network software packages do not support the addition or

removal of hidden neurons during training. The constructive approach involves

adding hidden neurons until network performance starts deteriorating. The

destructive approach is similar except that hidden neurons are removed during

training (Kaastra and Boyd [1996]).

Regardless of the method used to select the range of hidden neurons to be

tested, the rule is to always select the network that performs best on the testing

set with the least number of hidden neurons. When testing a range of hidden

neurons it is important to keep all other parameters constant. Changing any

parameter in effect creates a new neural network with a potentially different

error surface which would needlessly complicate the selection of the optimum

number of hidden neurons (Kaastra and Boyd [1996]).

Number of output neurons

Deciding on the number of output neurons is somewhat more straightforward

since there are compelling reasons to always use only one output neuron. Neural

networks with multiple outputs, especially if these outputs are widely spaced,

will produce inferior results as compared to a network with a single output

(Masters [1993]). A neural network trains by choosing weights such that the

average error over all output neurons is minimized. For example, a neural

network attempting to forecast one month ahead and six months ahead cattle

futures prices will concentrate most of its effort on reducing the forecast with

the largest error which is likely the six month forecast. As a result, a relatively

large improvement in the one month forecast will not be made if it increases the

absolute error of the six month forecasts by an amount greater than the absolute

improvement of the one month forecast. The solution is to have the neural

networks specialize by using separate networks for each forecast. Specialization

also makes the trial and error design procedure somewhat simpler since each

neural network is smaller and fewer parameters need to be changed to fine tune

the final model (Kaastra and Boyd [1996]).
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Transfer functions

The majority of current neural network models use the sigmoid transfer func-

tion, but others such as the tangens hyperbolicus, arcus tangens and linear

transfer functions have also been proposed (Kaastra and Boyd [1996]).

Linear transfer functions are not useful for nonlinear mapping and classification.

Levich and Thomas [1993] and Kao and Ma [1992] found that financial markets

are nonlinear and have memory suggesting that nonlinear transfer functions are

more appropriate. Transfer functions such as the sigmoid are commonly used

for time series data because they are nonlinear and continuously differentiable

which are desirable properties for network learning (Kaastra and Boyd [1996]).

Klimasauskas [1993] states that if the network is to learn average behavior a

sigmoid transfer function should be used while if learning involves deviations

from the average, the tangens hyperbolicus function works best. In a standard

backpropagation network, the input layer neurons typically use linear transfer

functions while all other neurons use a sigmoid function (Kaastra and Boyd

[1996]).

The raw data is usually scaled between 0 and 1 or −1 and +1, so it is con-

sistent with the type of transfer function which is being used. Linear and

mean/standard deviation scaling (see section 2.2.3) are two of the most common

methods used in neural networks. In linear scaling all observations are linearly

scaled between the minimum and maximum values according to the following

formula:

SV = TFmin + (TFmax − TFmin)× (D −Dmin)
(Dmax −Dmin)

(3.1)

where SV is the scaled value, TTFmin and TFmax are the respective minimum

and maximum values of the transfer function, D is the value of observation

and Dmin and Dmax are the respective minimum and maximum values of all

observations (Kaastra and Boyd [1996]).

Simple linear scaling is susceptible to outliers because it does not change the

uniformity of the distribution, but merely scales it into the appropriate range

for the transfer function. In the S&P 500 data presented in figure 3.8, linear
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a) b)

Figure 3.8: Distribution of the scaled values of the S&P 500 closing prices (1962-

1993) time series. In figure a) the time series was scaled by means of minimum

and maximum scaling, in figure b) the same time series was scaled with mean

and standard deviation scaling (Kaastra and Boyd [1996]).

scaling results in 98.6 % of the training facts being contained within 10 % of

the neuron’s activation range (figure 3.8, a)). Proper training is unlikely to take

place with such a distribution. In mean and standard deviation scaling all values

plus or minus x number of standard deviations from the mean are mapped to

one and zero respectively. All other values are linearly mapped between zero

and one. This type of scaling creates a more uniform distribution (figure 3.8, b))

and is more appropriate for data which has not been sampled in any way. Most

neural network software programs will automatically scale all the variables into

the appropriate range. However, it is always a good idea to look at histograms

of the scaled input and output variables (Kaastra and Boyd [1996]).

3.4.6 Step 6: Evaluation of the system

The most common error function minimized in neural networks is the sum of

squared errors. Other error functions offered by software vendors include least

absolute deviations, least fourth powers, asymmetric least squares and percent-

age differences. These error functions may not be the final evaluation criteria

since other common forecasting evaluation methods such as the mean absolute

percentage error (MAPE) are typically not minimized in neural networks (Kaas-

tra and Boyd [1996]).
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In the case of commodity trading systems, the neural network forecasts would

be converted into buy/sell signals according to a predetermined criterion. For

example, all forecasts greater than 0.8 or 0.9 can be considered buy signals and

all forecasts less than 0.2 or 0.1 as sell signals (Hamm et al. [1993]). The buy/sell

signals are then fed into a program to calculate some type of risk adjusted re-

turn and the networks with the best risk adjusted return (not the lowest testing

set error) would be selected. Low forecast errors and trading profits are not

necessarily synonymous since a single large trade forecasted incorrectly by the

neural network could have accounted for most of the trading system’s profits

(Kaastra and Boyd [1996]).

3.4.7 Step 7: Training the ANN

Training a neural network to learn patterns in the data involves iteratively

presenting it with examples of the correct known answers. The objective of

training is to find the set of weights between the neurons that determine the

global minimum of the error function. Unless the model is overfitted, this set

of weights should provide good generalization. The backpropagation network

uses a gradient descent training algorithm which adjusts the weights to move

down the steepest slope of the error surface. Finding the global minimum is not

guaranteed since the error surface can include many local minima in which the

algorithm can become ”stuck”. A momentum term7 and five to ten random sets

of starting weights can improve the chances of reaching a global minimum. This

section will discuss when to stop training a neural network and the selection of

learning rate and momentum values (Kaastra and Boyd [1996]).

Number of training iterations

There are two schools of thought regarding the point at which training should

be stopped. The first stresses the danger of getting trapped in a local minimum

and the difficulty of reaching a global minimum. The researcher should only

stop training until there is no improvement in the error function based on a
7For definition of momentum term refer to glossary.
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Figure 3.9: Possible neural network training and testing set errors (Kaastra and

Boyd [1996]).

reasonable number of randomly selected starting weights (Masters [1993]). The

point at which the network does not improved is called convergence. The second

view advocates a series of train-test interruptions (Deboeck [1994], Mendelsohn

[1993]). Training is stopped after a predetermined number of iterations and

the network’s ability to generalize on the testing set is evaluated and training

is resumed. Generalization is the idea that a model based on a sample of the

data is suitable for forecasting the general population. The network for which

the testing set error bottoms out is chosen since it is assumed to generalize best

(Kaastra and Boyd [1996]).

The criticism of the train-test procedure is that additional train-test interrup-

tions could cause the error on the testing set to fall further before rising again

or it could even fall asymptotically (figure 3.9). In other words, the researcher

has no way of knowing if additional training could improve the generalization

ability of the network especially since starting weights are randomized (Kaastra

and Boyd [1996]).
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Both schools of thought agree that generalization on the validation set is the

ultimate goal and both use testing sets to evaluate a large number of networks.

The point at which the two approaches depart centres on the notion of over-

training versus overfitting. The convergence approach states that there is no

such thing as overtraining, only overfitting. Overfitting is simply a symptom

of a network that has too many weights. The solution is to reduce the number

of hidden neurons (or hidden layers if there is more than one) and/or increase

the size of the training set. The train-test approach attempts to guard against

overfitting by stopping training based on the ability of the network to generalize

(Kaastra and Boyd [1996]).

The advantage of the convergence approach is that one can be more confident

that the global minimum was reached. Replication is likely more difficult for

the train-test approach given that starting weights are usually randomized and

the mean correlation can fluctuate wildly as training proceeds. Another ad-

vantage is that the researcher has two less parameters to worry about; namely

the point at which to stop training and the method to evaluate which of the

train-test networks is optimal. An advantage of the train-test approach may be

that networks with few degrees of freedom (weights) can be implemented with

better generalization than convergence training which would result in overfit-

ting. However, empirical work has not specifically addressed this issue. The

train-test approach also requires less training time (Kaastra and Boyd [1996]).

The objective of convergence training is to reach a global minimum. This re-

quires training for a sufficient number of iterations using a reasonable number

of randomly selected starting weights. Even then there is no guarantee with a

backpropagation network that a global minimum is reached, since it may be-

come trapped in a local minimum. In practice, computational resources are

limited and tradeoffs arise. The researcher must juggle the number of input

variable combinations to be trained, the interval of hidden neurons over which

each network is to be tested, the number of randomly selected starting weights,

and the maximum number of runs. For example, 50 input variable combinations

tested over three different hidden neurons with five sets of randomly selected
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weights, and the maximum number of runs of 4000 result in 3000000 itera-

tions (epochs). The same computational time is required for ten input variable

combinations tested over six hidden neurons with ten sets of randomly selected

starting weights and 5000 epochs (Kaastra and Boyd [1996]).

One method to determine a reasonable value for the maximum number of runs

is to plot the mean correlation, sum of squared errors, or other appropriate error

measure for each iteration or at predetermined intervals up to the point where

improvement is negligible (usually up to a maximum of 10000 iterations). Each

iteration can be easily plotted if the neural network software creates a statistics

file or, if this is not the case, the mean correlation can be recorded at intervals

of 100 or 200 from the computer monitor. After plotting the mean correlation

for a number of randomly selected starting weights, the researcher can choose

the maximum number of runs based on the point where the mean correlation

stops increasing quickly and flattens (Kaastra and Boyd [1996]).

Many studies that mention the number of training iterations report conver-

gence from 85 to 5000 iterations (Deboeck and Cader [1994], Klaussen and

Uhrig [1994]). However, the range is very wide as 50000 and 191400 iterations

(Klimasauskas [1993], Odom and Sharda [1992]) and training times of 60 hours

have also been reported (Hamm et al. [1993]). Training is affected by many pa-

rameters such as the choice of learning rate and momentum values, proprietary

improvements to the backpropagation algorithm, among others, which differ be-

tween studies and so it is difficult to determine a general value for the maximum

number of runs. Also, the numerical precision of the neural network software can

affect training because the slope of the error derivative can become very small

causing some neural network programs to move in the wrong direction due to

round off errors which can quickly build up in the highly iterative training algo-

rithm. It is recommended that researchers determine the number of iterations

required to achieve negligible improvement for their particular problem and test

as many randomly selected starting weights as computational constraints allow

(Kaastra and Boyd [1996]).
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Figure 3.10: Simplified graphical representation of a neural network error surface

(Kaastra and Boyd [1996]).

Learning rate and momentum

The notion of the learning rate in backpropagation networks has already been

introduced in section 2.1.6. As an analogy to the backpropagation training al-

gorithm, one can consider the problem of trying to throw a ball from point A

to point C in figure 3.10, although in reality the error surface is multidimen-

sional and cannot be represented in a graphical format. The force on the ball

is analogous to the learning rate. Applying too much force will cause the ball

to overshoot its target and it may never return to point A or it can oscillate

between points A and B. During training, a learning rate that is too high is

revealed when the error function is changing wildly without showing a contin-

ued improvement. Too little force on the ball and it will be unable to escape

from point A which is evident during training when there is very little or no

improvement in the error function. A very small learning rate also requires more

training time. In either case, the researcher must adjust the learning rate during

training or ”brainwash” the network by randomizing all weights and changing

the learning rate for the new run through the training set (Kaastra and Boyd

[1996]).

One method to increase the learning rate and thereby speed up training time

without leading to oscillation is to include a momentum term in the backpropa-

gation learning rule. The momentum term determines how past weight changes
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affect current weight changes. The modified backpropagation training rule is

defined as follows:

∆wij(n) = ηδjixji + α∆wji(n− 1) (3.2)

where η is the learning rate, α is the momentum term, ∆wij(n) is the change

of weight wij at learning epoch n and xji is the ith input to neuron j (Kaastra

and Boyd [1996]).

The momentum term suppresses side to side oscillations by filtering out high-

frequency variations. Each new search direction is a weighted sum of the current

and the previous gradients. Such a two-period moving average of gradients filters

out rapid fluctuations in the learning rate. Momentum values that are too great

will prevent the algorithm from following the twists and turns in weight space.

McClelland et al. [1986] indicate that the momentum term is especially useful in

error spaces containing long ravines that are characterized by steep, high walls

and a gently sloping floor. Without a momentum term, a very small learning

rate would be required to move down the floor of the ravine which would require

excessive training time. By dampening the oscillations between ravine walls, the

momentum term can allow a higher learning rate to be used (Kaastra and Boyd

[1996]).

Most neural network software programs provide default values for learning rate

and momentum that typically work well. Initial learning rates used in previous

work vary widely from 0.1 to 0.9 Common practice is to start training with a

higher learning rate such as 0.7 and decrease as training proceeds. Many neural

network programs will automatically decrease the learning rate and increase

momentum as convergence is reached (Kaastra and Boyd [1996]).

3.4.8 Step 8: Implementation

The implementation step is listed as the last one, but in fact requires careful

consideration prior to collecting data. Data availability, evaluation criteria and

training times are all shaped by the environment in which the neural network

will be deployed. Most neural network software vendors provide the means by
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which trained networks can be implemented either in the neural network pro-

gram itself or as an executable file (Kaastra and Boyd [1996]).

If not, a trained network can be easily created in a spreadsheet by knowing its

architecture, transfer functions and weights. Care should be taken that all data

transformations, scaling and other parameters remain the same from testing to

actual use (Kaastra and Boyd [1996]).

An advantage of neural networks is their ability to adapt to changing market

conditions through periodic retraining. Once deployed, a neural network’s per-

formance will degrade over time unless retraining takes place. However, even

with periodic retraining, there is no guarantee that network performance can

be maintained as the independent variables selected may have become less im-

portant (Kaastra and Boyd [1996]).

It is recommended that the frequency of retraining for the deployed network

should be the same as used during testing on the final model. However, when

testing a large number of networks to obtain the final model, less frequent re-

training is acceptable in order to keep training times reasonable. A good model

should be robust with respect to retraining frequency and will usually improve

as retraining takes place more often (Kaastra and Boyd [1996]).



Chapter 4

Related Issues

In this chapter personal opinions of the author to different areas of artificial

intelligence in general and the specific domain of financial time series prediction

with ANNs are presented.

4.1 Impact of artificial intelligence to the prac-

tice of stock trading

I believe that neural networks and AI in general is changing the practice of stock

trading crucially. Since in almost every scientific report or article, results of the

applied algorithms are compared to other techniques, it can be assumed that

traders will be (or are already) using several algorithms and use the currently

best performing one.

My view is supported by the fact that in past, scientific research did not remain

unnoticed by financial trading practitioners. So, for example, Fama mentions

two points where the research of the Efficient Market Hypothesis (see p. 16)

influenced the way of thinking (thus way of acting) of traders ([Fama, 1991, p.

35]):

Since we are reviewing studies of performance evaluation, it is well

to point out here that the efficient-markets literature is a premier

122
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case where academic research has affected real-world practice. Be-

fore the work on efficiency, the presumption was that private in-

formation is plentiful among investment managers. The efficiency

research put forth the challenge that private information is rare.

One result is the rise of passive investment strategies that simply

buy and hold diversified portfolios (e.g. the many S&P 500 funds).

Professional managers who follow passive strategies (and charge low

fees) were unheard of in 1960; they are now an important part of

the investment-management industry.

The second change of way of trading follows few lines later ([Fama, 1991, p.

35]):

The market-efficiency literature also produced a demand for perfor-

mance evaluation. In 1960, investment managers were free to rest

on their claims about performance. Now, performance measurement

relative to passive benchmarks is the rule, and there are firms that

specialize in evaluating professional managers.

Hence it can very well be assumed that future (or particularly smart today’s

trader) will use a big arsenal of predictors, but trust only the one which performs

best at the moment.

4.2 Integrated time series predictor

4.2.1 Introduction

In this section an approach to financial time series prediction will be introduced

theoretically, which appears to be most promising according to my opinion. The

imaginary predictor presented here is regarded as the logical ”next step” in the

domain of financial time series prediction research.
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4.2.2 Motivation

Nature uses only the longest threads to weave her patterns, so that

each small piece of her fabric reveals the organization of the entire

tapestry.

Richard Feynman

Financial time series aren’t natural phenomena, they are mere images of natural

phenomenon of economy1, like electromagnetic rays and star dust are distant

appearance of stars observed by telescopes or spacecraft. Financial time series

can not be separated from the process that generates them.

Financial time series can be compared with time series in other scientific fields,

e.g. the electrocardiogram (ECG) in medicine. It provides valuable information

about the health of a person, but nobody assumes that a precise diagnosis can

be made using only the ECG or statistical data derived from it. In this case, the

underlying process is the activity of human organism as a whole and the ECG

an image of one part (out of many parts) of its activity. In case of financial time

series, they are the images and the underlying process is the economy.

Paraphrasing the quote at the beginning of this section, the financial time series

are the threads of a large tapestry, the economy.

Contrary to this intuitive idea, financial prediction techniques discussed in this

work, try to separate financial time series from the underlying process and to

predict them purely on statistical basis. As we saw above, this works very

well. But why are neural networks claimed to be good predictors? To author’s

opinion, because there is nothing better currently present.

A sensibly designed prediction algorithm should take into account not only

statistical information, but also the most important current properties of the

underlying process. Such a predictor is called by the author an integrated time

series predictor , since it integrates several different subsystems.
1The author claims that stock and option trading are part of the economy as a whole which

is a natural phenomenon. It is natural, because every human society has to decide ”what,

how and for whom to produce” (study of these three w-questions is called ”economics”, [Begg

et al., 1997, p. 2]). Hence, economical system is present everywhere in one form or another.
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4.2.3 Possible Implementations

What components should an integrated time series predictor consist of? In or-

der to make this decision, we will analyze the processes that a human trader

executes when making prediction about the future.

Firstly, a human trader is able to process newspaper articles, news related to

the company or industry of interest and other external information which in

most cases is available in form of text.

Secondly, a human trader has a profound economic education, which allows

him to extract important causal connections (patterns) in the information he

receives.

Thirdly, a human trader has a long experience as trader. This means that

through long experience he learned certain general rules (”rules of thumb”) us-

ing which he manages to make decision even with incomplete or false information

at hand. Normally, these decisions are correct. ”Subconscious” intuitive knowl-

edge (affinity towards taking a certain - in most cases correct - action without

the ability to explain the reason for doing so verbally) also falls in this category.

Fourthly, a human trader has powerful statistics software at hand, which allow

him to develop an understanding of current market situation from the statisti-

cian’s point of view (the point of view of financial time series prediction).

What happens, if such a trader makes a mistake? Since human species usually

work in teams and the work of one person is often verified by other team mem-

bers, it can be assumed that most random mistakes are ruled out provided that

the team as a whole works efficiently. This is the fifth feature of a human trader.

The proposed integrated time series predictor mimics most of these features.

The structure of an integrated time series predictor that possesses many of

the above properties is presented in figure 4.1. The integrated time series pre-

dictor consists of three subsystems. The linguistic subsystem has the task of

extracting relevant information from textual data. The text reader is a simple

”non-AI” system that simply gathers textual data which are relevant for period

of time and application domain in question. The text classification subsystem

serves the purpose of deriving simple information out of textual data by means
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Figure 4.1: Logical structure of an integrated time series predictor
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of text classification. That means, that it has been trained to recognize texts

that precede large movements of the quantity of interest (e.g. the stock price).

This subsystem works mainly on statistical basis and is only able to give basic

(simple) information, such as whether the stock index will rise or fall on the

next day. There exist a lot of algorithms for text classification, many of them

being implemented as part of the famous Rainbow package (McCallum [1998]).

The higher order text processing subsystem is a more sophisticated text analyzer.

It should be able to extract more complex relationships from the available text

data, perhaps using some natural language processing (NLP) technique. Such

an NLP mechanism would be designed specifically for the domain of financial

texts, i.e. it is not necessary for this subsystem to be a universal text analyzer.

The higher order text processing subsystem could be implemented as a text

parser connected with some semantic base and a comprehensive sense deriva-

tion mechanism. Such a system could process huge amounts of information

(current state of economy, large companies’ news, macroeconomic events etc)

contained in textual form (e.g. the articles of financial newspapers, newsgroups,

WWW texts).

The text analysis postprocessor is a ”non-AI” mechanism for formatting the

results of textual analysis into a form which can be used by the statistical tech-

niques and in scope of the verification of them.

The statistical analysis subsystem is the module which forms predictions on

the basis of statistical analysis of time series. The data preprocessing subsys-

tem incorporates the vast variety of preprocessing methods already described

in section 2.2.3. The most important property of the statistical module is the

presence of many different prediction techniques. There are many possibilities

how they can used for prediction of further action:

Voting From all possible prediction alternatives the one is chosen, for which

the majority of the techniques ”vote”,i.e. if there are three prediction

alternatives ”tomorrow the stock price will fall” (1), ”tomorrow the stock

price will rise” (2) and ”tomorrow there will be insignificant changes in

the stock price” (3), and 3 prediction techniques predict ”1”, 5 predict ”2”
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and and one predicts ”3”, then prediction ”2” is taken as final prediction

since the majority of techniques ”voted” for it.

Best performing technique wins The other approach may be the same as

described in Tino et al. [2000], namely that all algorithms are run on past

data (e.g. the last 100 days) and then the best performing one is chosen

as a predictor for the current day.

The necessity for this mechanism arises from time-varying nature of financial

time series already described in section 1.1. The statistical analysis preprocessor

is a mechanism that summarizes the prediction data of the various techniques

and calculates other important information. Such information may be a measure

of confidence in the prediction made by a particular technique (e.g. such as those

proposed in Dybowski and Roberts [2001]). Other useful postprocessing step

would be the extraction of symbolic representations out of neural networks.

Further, the statistical analysis postprocessor serves the purpose of formulating

a reaction to the prediction, being in most cases a certain trading action (buy,

sell).

These reactions are being verified by two databases, which represent general

knowledge about

1. how economy functions (economic rulebase)

2. how successful traders act in similar situations (trading expert system).

They have the task of verifying that the trading actions proposed by the sta-

tistical analysis subsystem are consistent with economic ”common sense” and

experience of successful traders.

4.2.4 Justification of the integrated time series predictor

Apart from the linguistic subsystem, all components of the integrated time se-

ries predictor presented above are well-known (and practised) way of time series

prediction. As already mentioned in comments to the examples (see section

3.3), application of different prediction techniques is necessary due to the time-

variability of financial time series and is done in most studies of ANNs in finance.
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The verification subsystem may sound as a novelty, but it is not. Verification

of statistical time series prediction is currently done by other machines, namely

humans. Transferring their knowledge to databases may be an engineering, but

in no case a scientific innovation.

Hence, the only point that needs a rational explanation is the presence of the

linguistic subsystem. Apart from the intuition that the textual information

contained in various sources (newspapers, journals, newsgroups, WWW page)

is useful for making good financial predictions, two empirical studies on incorpo-

ration of textual information into financial time series prediction will be briefly

presented. These studies provide evidence of usefulness of incorporation of tex-

tual data into prediction algorithms.

In the study described in Thomas and Sycara [2000], the textual information

comes from the postings on a web bulletin board. These data are processed in

two ways:

1. text classification that establishes a relationship between the up/down

price movements and the statistical properties of the bulletin board mes-

sages of a certain day, i.e. the entire bulletin board corpus is used to form

the ”up” or ”down” prediction

2. genetic algorithm that learns simple rules, which are based on numeric

properties of the textual data set (such as number of messages posted on

a day, the number of words etc).

The integration of the two approaches resulted in a significant improvement of

performance in terms of profit.

The architecture of the second predictor (described in Wüthrich et al. [1998])

that uses textual data is given in figure 4.2. Old news and Old index values

contain the training data, the news and closing values of the last one hundred

stock trading days (Wüthrich et al. [1998]). Keyword records contains over four

hundred individual sequences of words such as ”bond strong”, ”dollar falter”,

”property weak”, ”dow rebound”, ”technology rebound strongly” etc (Wüthrich

et al. [1998]). These are sequences of words provided once by a domain expert
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Figure 4.2: Architecture of textual financial time series predictor described in

Wüthrich et al. [1998].

and judged to be influential factors potentially moving stock markets (Wüthrich

et al. [1998]).

Given the current data, the prediction is done as follows (Wüthrich et al. [1998]):

1. The number of occurrences of the keyword records in the news of each day

is counted.

2. The occurrences of the keywords are then transformed into weights. This

ways, for each day, each keyword gets a weight.

3. From the weights and the closing values of the training data, probabilistic

rules are generated.

4. The generated rules are applied to today’s news. This predicts whether

a particular index such as the Dow will go up, moves down or remains

steady.

5. From the prediction whether the Dow goes up, down or remains steady,

and from the latest closing value also the expected actual closing value

such as 8393 is predicted.
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6. The generated predictions are then moved to the Web page http://www.

cs.ust.hk/~beat/Predict where each day at 7:45 local time in Hong

Kong the daily stock market forecasts can be followed.

The average accuracy reported by Wüthrich et al. [1998] is 43.6 % correct, 37.4

% ”slightly wrong” (the system predicts up or down and it was actually steady;

or, the system predicts steady and it was actually up or down) and 19 % wrong

(the system expects the index to go up and it moves down, or vice versa).

However, one should not forget, that prediction accuracy is not always pro-

portional to the profitability of a prediction algorithm (as we saw in section

3.3.1).

4.3 The perfection aspiration

The study of several AI surveys like Johnson-Laird [1996] suggests that scien-

tists involved in AI research seem to rule out any possibility of emergence of

intelligent machines due to unrealistic idea of how complex systems are devel-

oped.

I do not agree with such way of thinking and intend to show its weaknesses on

the following lines.

The thread leading through this explanation is natural language processing, but

the problem discussed below affects not only NLP, but AI in general.

4.3.1 Problem definition

The problem I am discussing in this section is a problem of wrong thinking. After

surveying the capabilities of today’s computers and current stage of development

in computer science and other scientific disciplines, one wonders why the AI has

such a little impact on our everyday lives.

For example, there exists a scientific basis for development of natural language

interfaces2 for software programs, yet only few of them have such NLP interfaces.

At the same time, often the computer programs are quite complicated so that
2”Natural language interfaces” means text-based interface, not speech recognition

http://www.cs.ust.hk/~beat/Predict
http://www.cs.ust.hk/~beat/Predict
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any help is highly appreciated by the user, even if the answers to his questions

are not always precise and even if the computer interacts with the user in a

simple English.

Often, scientists claim that the reason for this lies in inferior capabilities of

today’s software or restricted computational power. While the latter argument

will exist probably always, the former deserves more attention.

It is well known that computers can not do many things (natural language

processing among them) with the same ease as humans. They are imperfect

language processors, image analysts and thinkers. But does this mean, that

they cannot be useful unless they are perfect?

To the author’s opinion, they can be useful even if they aren’t perfect. Consider

for example the domain of automatic translation. Almost everyone knows jokes

about early experiments in this domain. Even today, the computers are not

capable to make precise translations automatically. But they can and do assist

human translators through making ”raw” translations which then are verified

by a human translator. Automatic translators are far from being perfect, yet

they are useful by making the process of translation more efficient.

Brought to a point, the way of thinking of many scientists can be expressed as:

wait until we are able to build perfectly intelligent (human-like) machine, and

then it will be possible to make any use of AI. This way of thinking is typical

particularly in the area of NLP.

4.3.2 Counterargument 1: Artificial versus Natural Intel-

ligence

The first point I criticize on this way of thinking is the mixing up artificial and

natural intelligence. Artificial (computer driven) and natural (powered by the

natural computers in human brain) are different both in function and in purpose.

Functional difference is given by the fact that artificial computers and natural

computers are machines, which are implemented using completely different el-
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ements at the low level (flip-flops on one side, neurons on another3). However,

it may be the case that both of them are similar on higher levels (e.g. the de-

duction and induction procedures, learning).

Difference in purpose stems from the fact that natural (human) computer is

designed to steer its possessor in his environment ensuring that he can adapt

to, survive and reproduce himself in it. Contrary to natural intelligence mecha-

nisms, AI exists to solve exactly those problems, which humans can not. Hence,

it may be very difficult and perhaps not even sensible to try to re-invent all

human abilities in machines.

Since natural and artificial intelligence differ in function it cannot be guaran-

teed that all human abilities can be implemented in machines; and since natural

and artificial intelligence differ in purpose it cannot be guaranteed that such an

implementation will be of any use.

4.3.3 Counterargument 2: The Engineering Approach to

Development of Complex Systems

Another argument against the perfection aspiration is the way great break-

throughs in other scientific disciplines occurred.

Consider, for example, the space flight. Making his early experiments, Zi-

olkovsky4 and other scientists of his time did not attempt to build a space

station. Instead, the development of spacecraft proceeded in many stages:

1. Ballistic rocket

2. Transcontinental rocket

3. Artificial Earth’s satellite

4. Safe flight of a dog into (and return from) space
3Since the human brain is not researched in enough detail, ”neurons” should be interpreted

as ”most basic element of human computational machinery”.
4Constantin Eduardovich Ziolkovsky (1857-1935) was a Russian scientist who in 1903 laid

out fundamental principles of rocketry and thus formed the theoretical basis for space flight.

His researches were essential for the exploration of space, on the Soviet and Russian as well

as on the western side (P.Hürzeler [2001]).



CHAPTER 4. RELATED ISSUES 134

5. Safe flight of a human into (and return from) space

6. operating a space station on earth’s orbit where humans can safely live

for long periods of time.

Each individual stage was useful in some way. On each stage, there was always

a some advantage compared to previous stages (e.g. ability to transport nuclear

bombs over longer distances, more sophisticated experiments etc).

The same approach was taken not only by Korolyov5 and other space re-

searchers, but also by the best engineer of all times: the evolution. Beginning

with one cell organisms, the development proceeded to more complex organisms

and ended with humans. It did not attempt to proceed from the level of amoe-

bas directly to a homo sapiens sapiens.

In requiring perfection from computers, the scientists who adopt the way of

thinking criticized here, demand from the engineer to create a homo sapiens at

a stage where not all dinosaurs are dead.

The ”right”, more logical (and more probable) way the development of AI will

take, can be compared with the development of the methods which are subject of

this work: financial time series predictors. Beginning with simple ARIMA mod-

els, the development proceeded to more powerful GARCH models and to neural

networks, and is currently at the stage where statistical time series processing

and textual data processing are being integrated in order to achieve a further,

small but tangible improvement. Note that at each stage of development, there

always was an improvement associated with a new technique.

4.3.4 Counterargument 3: What for?

Third counterargument of the perfection aspiration is the highly questionable

issue of whether a perfectly human-like machine will be of any use. In the history

of mankind, it happened several times that superior scientific achievements were

convicted to death in archives without any chance to be used broadly.
5Sergey Pavlovich Korolyov (1907 - 1966) ”chief designing engineer” of the Soviet space

programme, who leaded several highly successful space projects (e.g. the first satellite) which

often outperformed analogous western ones.
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Our grandparents witnessed the advent of atomic bombs, being even nowadays

the most efficient weapon available. Despite its advantages as a weapon and -

most important - as means of diplomatic pressure6, it is not widely used neither

the one way nor the other7.

We witness the advent of another highly promising technology, the science fiction

authors of past have dreamed of - the genetic engineering (in particular, cloning).

Undoubtedly being a scientific breakthrough, its fruits will hardly be reaped to

full extent. Due to high damage potential in case of misuse, some of the leading

researchers discontinued their research towards cloning of humans. It can be

anticipated that many branches of genetic engineering will be prohibited on an

international basis.

Therefore, one can assume that an intelligent, human-like machine will not

be used broadly, if developed. Even today, AI is often associated with fear

that computers may become too intelligent and make important decisions by

themselves, without to consult the humans8. Hence, one can assume that long

before any human-like computer is developed, the research of it will be either

prohibited or restricted due to public protests.

Perhaps we will never have robots in our homes being as natural as humans but

always having a shut-down option. . .

4.4 Problems of ANNs in finance

Undoubtedly being much more powerful than traditional time series process-

ing techniques, neural networks have several disadvantages, among which Zekic

[1998] mentions

6After all, the nuclear weapons of cold war brought the world 46 years of relative (compared

to present day) peace.
7To author’s opinion, many conflicts could be solved if their participants would face the

threat of nuclear assault in case they reject to negotiate with each other.
8To author’s opinion the danger of computer system stems not from their intelligence,

but from their complexity and a more difficult testability. A wrongly programmed airplane

on-board computer, a cruise missile with defective battery and a buggy spacecraft software

resulted in damage because of its complexity, not intelligence.
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1. NNs require very large number of previous cases

2. ”the best” network architecture (topology) is still unknown

3. for more complicated networks, reliability of results may decrease

4. statistical relevance of the results is needed

5. a more careful data design is needed

Most of these issues have already been adressed in previous sections (particu-

larly section 3.4). The fourth problem identified by Zekic [1998] is a severe one,

but the possibilities of evaluating statistical significance of the results produced

by neural networks are being researched, e.g. in Dybowski and Roberts [2001],

who propose a method of evaluating confidence intervals of the results generated

by neural network.

The problem of determination of the optimal topology (point 2) is also being

researched. For example, the so-called TACOMA neural network is able to

determine the optimal topology automatically (without user intervention) and

”grows” minimal neural networks that approximate the target function. The

network created in this way is then trained using a variant of the backpropaga-

tion algorithm (for description of the TACOMA model see Lange et al. [1994]).

In theory, a combination of the SCG learning algorithm (discussed in section

2.1.7) and TACOMA would give rise to a ANN system that does not need any

settings to be done by the user at all because the optimal topology is discovered

by the TACOMA algorithm and the SCG learning algorithm has no parameters

to be set by the user9.

Further problem of neural networks in finance not mentioned by Zekic [1998],

is the slow transfer of theoretical knowledge into practice of ANN application.

In particular, this applies to the learning algorithms used. Despite the presence

of the highly efficient (in terms of learning speed) SCG algorithm for almost 10

years now, 95 % of neural network systems examined by Wong et al. [1997b]

9Author’s attempts to empirically research the possible advantages of a TACOMA/SCG

combination failed due to lack of a currently working and available TACOMA implementation

(Zell [2002]).
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employ the older backpropagation algorithm with all its disadvantages.

Last but not least, there is also a problem of interpretability of the results

produced by neural networks. Contrary to traditional time series processing

methods that have relatively few parameters, trained neural networks are hard

to interpret by humans due to the large number of parameters (weights). The

incomprehensibility of trained neural networks is a limiting factor not only for

the application of neural networks to the particular field of financial time series

prediction, but a general problem of neural networks. The author’s opinion on

this topic is supported by the explanations in Craven and Shavlik [1996] and

Duch et al. [2000]. The domain of symbolic rule extraction from neural networks

appears to be a highly promising research direction.



Chapter 5

Conclusions

In scope of the present final year project an investigation of the current stage

of development of artificial neural networks in the domain of financial time

series prediction has been carried out. Being an important part of the topic of

the work, the specific properties of common financial time series were studied

(section 1.1, p. 13) and traditional approaches to financial time series prediction

have been presented (section 1.4, p. 24) and partially demonstrated on practical

examples (appendices A (p. 164), C (p. 169) and D (p. 172)). A detailed

treatment of artificial neural networks (chapter 2, p. 35) including the specific

topics of data pre- and postprocessing (section 2.2, p. 62) and time series

processing (section 2.3, p. 79) is followed by an explanation of issues involved

in application of artificial neural networks to financial time series forecasting

(chapter 3, p. 89). In particular, a methodology for designing neural network

based prediction systems is outlined (section 3.4, p. 102) as well as selected

recent research results (section 3.3, 95).

The final part of the work is a discussion of several related issues of the use of

neural networks (chapter 4, p. 122). Most promising research directions from

the author’s point of view are presented concerning both neural network driven

time series prediction as well as artificial intelligence in general.

Main findings of the work can be summarized as follows:

138
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• Neural networks are a powerful tool for financial time series prediction,

capable of outperforming most other known algorithms (section 3.2, p.

94).

• The potentially superior predictive power of neural networks can be ex-

ploited only if specific properties of the time series data are accounted

for by means of appropriate pre- and postprocessing mechanisms (section

3.4.3, p. 105).

• Most promising directions of the research in the domain of neural networks

in financial time series prediction are incorporation of textual data into

prediction systems, statistical evaluation of neural network performance

and improving the comprehensibility of neural networks by symbolic rule

extraction (chapter 4, p. 122).
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Glossary

A

Adaptive Linear Neuron (ADALINE) Early neural network developed by Widrow

and Hoff (Widrow and Hoff [1960]) capable of modelling linearly

separable target functions.

Akaike’s Information Criterion (AIC) Akaike’s information criterion is a method

for determining the order of an autoregressive model by minimiz-

ing an information theoretic function of the model order p, AIC(p)

(Castiglioni [2001a]).

ANN Artificial Neural Network.

Autocorrelation If the disturbance term (unpredictable random component)

is not independent of its values in other observations in the time

series, it is said to be subject to autocorrelation (serial correlation).

B

Backpropagation (Error backpropagation) Popular training algorithm for ar-

tificial neural networks of the multi-layer perceptron type, in which

the approximation error of the neural network is propagated back-

wards from the output, over hidden to input layer.

Business cycle The business cycle is the short-term fluctuation of total (eco-

nomic) output around its trend path. The trend path of output
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is the smooth path it follows in the long run once the short-term

fluctuations are averaged out (Begg et al. [1997]).

Buy and hold trading strategy A long-term investing strategy in which money

is invested in buying a portfolio and holding it for a certain period

of time, without any reaction to short-term fluctuations of the

portfolio’s value.

C

CG Conjugate Gradient.

Computational Neuroscience Field of computer science concerned with real-

istic, biologically consistent modelling of the activities in human

or animal nervous system by means of computer simulations.

Confidence interval The confidence interval is the range, the actual (not the

estimated ones) values of a probability distribution are expected

to lie.

Correlation Measure of association between two variables (comparable to co-

variance). Correlation, compared to covariance, has the advantage

of being independent of units in which the variables are measured

(Dougherty [1992]).

Covariance Measure of association between two variables (Dougherty [1992]).

Curse of dimensionality Phenomenon of decreasing performance of a neural

network as reaction to presence of too many inputs. The perfor-

mance deterioration is contrary to the intuitive assumption that

more input data would yield better performance.

D

DAX DAX (Deutscher Aktienindex) is a German benchmark stock in-

dex, which is made up of the stock values of 30 leading German

companies.
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Delta neutral trading strategy Option contracts trading strategy, in which

the profitability of a trading action depends on the volatility of

the underlying commodity, but does not depend on changes in

price of the underlying commodity. In such trading strategies (e.g.

long straddle, short straddle), the estimation of volatility is crucial

for making profitable decisions.

Dow Jones Industrial Average (DJIA) The DJIA is computed by adding all

the daily stock prices of a group of 30 major US corporations and

dividing that total by a number called the divisor. This divisor will

change whenever one of the 30 companies declares a stock split. A

company will split its stock when the price becomes high, making

it more affordable. By changing the divisor, the index value is

unaffected by stock splits (Systems [2002]).

E

Economics The study of how human societies decide what, how and for whom

to produce (Begg et al. [1997]).

Eigenvalue An eigenvalue of an N×N matrix A is a scalar c such that Ax = cx

holds for some nonzero vector x (Herman [1996]).

Eigenvector An eigenvector of a N ×N matrix A is a nonzero vector x such

that Ax = cx holds for some scalar c (Herman [1996]).

EMH Efficient Market Hypothesis.

Excess profit Profit of a firm over and above what provides its owners with a

normal (market equilibrium) return to capital (Deardorff [2001]).

Expected value The expected value of a discrete random variable is the weighted

average of all its possible values, taking the probability of each

outcome as a weight. In case of a real random variable, the ex-

pected value equals to population mean of this variable (Dougherty

[1992]).
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Expert system An expert system is a computer program that simulates the

judgement and behavior of a human or an organization that has

expert knowledge and experience in a particular field. Typically,

such a system contains a knowledge base containing accumulated

experience and a set of rules for applying the knowledge base to

each particular situation that is described to the program. So-

phisticated expert systems can be enhanced with additions to the

knowledge base or to the set of rules. Among the best-known ex-

pert systems have been those that play chess and that assist in

medical diagnosis (Thing and Rouse [2002]).

F

Feed-forward neural network A neural network which in which the nodes

(neurons) of the network are organized in groups (layers). All

neurons of a layer have input connections only from the previous

layer and have output connections only to the next layer, and to no

other nodes. The name of this type of neural network stems from

the direction of information processing within a trained network -

from the input layer forward to hidden layer (or layers) and finally

to the output layer.

FTSE 100 (Financial Times Stock Exchange 100) The FTSE 100 is a bench-

mark index tracking the performance of the London Stock Ex-

change. FTSE 100 comprises the 100 largest companies traded on

the exchange (MSN Money [2002a]).

G

Gradient Gradient is the vector of first partial derivatives of a function.
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H

Heteroskedasticity Property of a time series, in which the disturbance term

(the unpredictable random component) has different probability

distribution at different points in time (Dougherty [1992]).

K

Kronecker delta symbol Kronecker delta symbol δij equals to 1, if i = j and

equals to 0 otherwise.

L

Learning rate In backpropagation learning algorithm, the learning rate is a

measure for the degree to which the weights of a neural network

are changed during each training step (Mitchell [1997]).

Leverage Leverage is the use of debt to increase the returns of a company

(MSN Money).

Linear separability Property of a learning problem, in which a line or plane can

be drawn that separates all training instances into the appropriate

classes.

M

Macroeconomics Macroeconomics is a discipline of economics concerned with

investigation of the economy as a whole (as opposed to microe-

conomics which offers a detailed treatment of individual decisions

about particular commodities). It deliberately simplifies the in-

dividual building blocks of the analysis in order to retain a man-

ageable analysis of the complete interaction of the economy (Begg

et al. [1997]).

MLP Multilayer Perceptron.
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Momentum term In variations of the original backpropagation algorithm, the

momentum term establishes a partial dependence of the weight

change at a certain learning step upon the weight change at the

previous learning step. This is done for the purpose of overcoming

the capture (oscillation) of the learning algorithm in local minima

of the error function or in flat regions of the error function. It also

has the effect of gradually increasing the step size of the search in

regions where the gradient is unchanging, thereby speeding con-

vergence (Mitchell [1997]).

Multi-layer perceptron (MLP) An artificial neural network possessing one or

more hidden layers.

N

Neural network A neural network is an interconnected assembly of simple pro-

cessing elements whose functionality is modelled after the neuron in

the brain. The processing capability of the network is determined

by the relative strengths (weights) of these connections. These

weights are calculated by the process of adaption to (and learning

from) a set of training patterns (Smith [2000]) .

O

Option contract An option contract gives the holder the right, but not the

obligation to buy or sell a previously specified commodity or stock

(underlying commodity) at a previously specified price at a previ-

ously specified point in time in the future.

R

Random walk Time series of observations, where each observation is a sum of

the previous observation plus a random number.
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Residual The difference between actual and estimated (by means of a pre-

diction technique) value of a time series (Dougherty [1992]).

S

SCG Scaled Conjugate Gradient.

Serial correlation See Autocorrelation.

Sliding window technique In order to account for the time-varying nature of

many time series, prediction algorithms are trained not on the

whole data set, but instead on a small subset (sliding window size)

of the data which correspond to a certain period of time prior to the

point in time to be predicted. The in this way trained algorithm

is applied for making predictions for a few days ahead. Then, the

sliding window is shifted by a small number, the algorithm is re-

trained and again applied to make predictions a few days ahead.

Standard and Poor’s index (S&P 500 Index) S&P 500 Index is made up of

500 stocks. The total market value of each company is computed

and summed. A company’s market value is equal to the share price

times the total shares outstanding. The sum of all 500 companies’

market values is then divided by a divisor. The result is that each

company influences the index based on its total market value rather

than its share price. This type of index is a capitalization-based

index (Systems [2002]).

Stationarity Property of a time series in which probability distributions involv-

ing values of the time series are independent of time translations

(Castiglioni [2001b]).

Stock Market Index A stock market index is a number computed from the

prices of a group of stocks. It is computed daily to gauge the

movement in the market for that day (Systems [2002]).
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T

TACOMA (TAsk decomposition by COrrelation Measures) Neural network

system which automatically determines the optimal network topol-

ogy for the task to be learned (automatic topology determination),

thus relieving the user of the need to determine the optimal topol-

ogy empirically.

Technical analysis The practice of trying to divine stock prices by examining

trading patterns and comparing the shape of current charts to

those from the past (MSN Money [2002b]).

Test set Part of the available data set which is used to test the performance

of an adaptive prediction algorithm. Usually train and test sets are

chosen not to overlap in order to get a measure of generalization

ability of the algorithm.

Training set Part of the available data set which is used to train an adaptive

prediction algorithm.

V

Volatility Volatility is the synonym for standard deviation of some quantity

(e.g. stock price) within a defined period (e.g. during a day). As

is the case with delta neutral trading strategies, sometimes cor-

rect estimation of volatility is crucial for making profitable trading

decisions.

W

Weights Strengths of the connections between individual nodes in an artifi-

cial neural network. By changing of these strengths (weights) the

network can be ”trained” to produce arbitrary output pattern as

reaction to a certain input pattern.



GLOSSARY 163

White noise Time series of randomly distributed real numbers with zero mean

and no association between observations drawn at different points

of time.



Appendix A

AR example

The example of fitting an AR(1) process to a log-return time series of daily

General Electric average stock prices presented here is developed by Ruppert in

Ruppert [2001b].

A.1 Notation

We follow Ruppert’s notation in this example, thus defining the AR(1) process

as

yt − µ = φ(yt−1 − µ) + εt

yt = (1− φ)µ + φyt−1 + εt

A.2 Example

Ruppert fits the process to a time series proceeding in following steps:

1. Transformation of prices to log prices

2. Transformation of log prices to log returns

3. Estimation of parameters of the AR process

4. Calculation of the SACF of the residuals
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Log returns are defined as

∆pt

where p is the time series of log prices. Using the multiple regression analysis

(see appendix B), the parameters of the AR(1) process are estimated:

yt = (1− φ)µ + φyt−1 + εt

ŷ = a + bx

y = yt

x = yt−1

a = (1− φ)µ

b = φ

b =
Cov(yt−1, yt)

Var(yt−1)

The regression operation is supported by popular statistics software programs

like SPSS or SAS. The regression yields following values

a = −0.0000907

b = 0.22946

Now the basic statistical test has to be performed:

H0 : φ = 0 ⇒ b = 0 H1 : φ 6= 0 ⇒ b 6= 0

The null hypothesis states that the log returns of the stock prices are just white

noise, i.e. there is no correlation with past values. The regression results are

tested with the t test:

s2
u =

n

n− 2
Var(e)

s. e.(b) =

√
s2

u

n Var(x)

s. e.(b) = 0.062

t =
b− β0

s. e.(b)

t =
0.22946− 0

0.062

t = 3.7010

(A.1)
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Figure A.1: SACF of the residuals

We check the null hypothesis at 5 % significance level with a two-tailed t test

with 249 degrees of freedom (number of log returns minus number of parameters

estimated, in our case 2, a and b). The critical value of t is in this case equal

to 1.97. We reject our null hypothesis (b = φ = 0) since the t statistic does not

lie within the interval [−1.97, 1.97]. Hence the time series being analysed is not

a white noise (at least an AR(1) model fits it better than white noise).

But does an AR(1) model actually fit the time series well? If the model predicts

the time series well, then the residuals should actually be unpredictable, i.e.

random, not autocorrelated values.

We analyse that using the SACF function of the residuals (see figure A.1).

Note the huge outlier at the point k = 6. This is a hint that in fact, there

is an autocorrelation in the residual values. Hence, the AR(1) is not a proper

means for modelling this time series.



Appendix B

Regression analysis

Multiple regression analysis is a technique for finding a function of type

y = α + β1x1 + β2x2 + · · ·+ βkxk + u (B.1)

which represents a model of relationship between two or more variables (x1

to xk). u is the so-called disturbance term, i.e. the non-predictable, random

component.

Consider the observations of the variables x and y shown in figure B.1:

The task of the regression analysis is to fit a line such that the sum of squared

residuals is minimized (see figure B.2). A residual is the difference between

the actual and estimated value. In figure B.2 the residuals are represented by

broken lines. Given k = 1 (simple regression analysis, value of y depends on

only 1 variable),

y = α + β1x1 + u

ŷ = a + bx1

a = ȳ − bx̄

b =
Cov(x, y)
Var(x)

(B.2)

The derivation of these expressions is omitted here and can be found in other

sources (e.g. Dougherty [1992]).
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Figure B.1: Observations of variables x and y

Figure B.2: Fitted line so that the sum of squared residuals is minimized



Appendix C

ARIMA example

For the demonstration of the ARIMA model the author uses the Ox software

package and the ”Cree Incorporated” stock price data.

First, we look at the SACF1 of this data (the diagram is created using an

Ox function, see figure C.1).

The original time series is not stationary, the differences are. Therefore we

choose the ARIMA(p, 1, q) model.

Using an Ox script, we estimate the parameters of the ARIMA(1, 1, 1) model

and get the following results (output of the Ox script):

Coefficient Std.Error t-value t-prob

d parameter 1.00000 (fixed)

AR-1 0.343038 0.3539 0.969 0.333

MA-1 -0.161787 0.6089 -0.266 0.791

Cree_1 -0.0626317 0.3364 -0.186 0.852

log-likelihood -625.663391

no. of observations 226 no. of parameters 4

AIC.T 1259.32678 AIC 5.5722424

mean(Cree) 63.0963 var(Cree) 215.906

1In Ox the function is said to create an ACF diagram, in this context it is assumed that

in Ox ACF means SACF.
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Figure C.1: SACFs of the original time series and the time series after the taking

the differences

sigma 3.86399 sigma^2 14.9304

The parameters of the ARIMA process are denoted by AR-1 and MA-1. The

value AIC means Akaike’s information criterion. This is a measure of how good

a model fits the actual data. When comparing multiple models, the one with

the least value of AIC is considered best (Ruppert [2001b]).

We try out other models and get the AIC values shown in table C.1.



APPENDIX C. ARIMA EXAMPLE 171

Model AIC

ARIMA(1,1,1) 5.5722424

ARIMA(1,1,2) 5.58066465

ARIMA(0,1,1) = MA(1) 5.56335283

ARIMA(1,1,0) = AR(1) 5.56369347

ARIMA(0,1,2) = MA(2) 5.56002487

ARIMA(2,1,0) = AR(2) 5.57226212

Table C.1: AIC values for different ARIMA models



Appendix D

Forecasting with ARIMA

In this example we follow Borchers (Borchers [2001]) and use the ARIMA(1, 1, 1)

model for the Cree Incorporated stock prices from appendix C.

Thus we have following setting:

ARIMA(1, 1, 1) γ1 = 0.343038 θ1 = −0.161787 (D.1)

Suppose we want predict the level of stock price 4 elements ahead (i.e. we want

to know the values yn+1 till yn+4 where n is the number of the last element of

the ”training” set, i.e. the last element of the part of the time series which was

used for calculating the coefficients of the ARIMA model).

Now we write out the model in the mixed form:

(1− γ1 B)(1− B)yt = (1− θ1 B)εt

(1− 0.343038B)(1− B)yt = (1− 0.161787B)εt

(1− B−0.343038B +0.343038B2)yt = εt − 0.161787B εt

(1− 1.343038B+0.343038 B2)yt = εt − 0.161787B εt

yt − 1.343038B yt + 0.343038B2 yt = εt − 0.161787B εt

(D.2)

Now we substitute the backwards operator by his meaning (see section 1.4.1, p.

25). As we know B x means the value of element preceding x.

yt − 1.343038yt−1 + 0.343038yt−2 = εt − 0.161787εt−1 (D.3)
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Hence our actual coefficients are:

γ1 = −1.343038 γ2 = 0.343038 θ1 = −0.161787

Now it is time to calculate the ψ weights. Their number depends on the number

of forecasts we desire to make (in our case 10). The transfer function is equal

to

ψ(B) =
θ(B)
φ(B)

ψ(B) =
(1− 0.161787B)

(1− 1.343038B +0.343038B2)

(D.4)

The author uses a computer program to perform the expansion of the Taylor

series and obtains the results shown in figure D.1. Therefore we have following

Figure D.1: Taylor series expansion

ψ weights:

ψ1 = 1 ψ2 = 1.504825ψ3 = 1.677999158350 ψ4 = 1.737404475282067300

Now it is time to calculate the values εt for the elements of the ”training” set.

This is done using the simple script shown in figure D.2. Having the values

εt at his disposal, the author proceeds to the calculation of the forecasts and

corresponding confidence intervals (figure D.3).

The results are presented in table D.1.

From these figures one notes that the ”uncertainty” of the prediction in-

creases as we move further, i.e. the more elements ahead we predict, the more

uncertain are these predictions. As Niels Bohr said, Prediction is very difficult,

especially if it’s about the future.
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Figure D.2: Script for the calculation of the εt time series

Figure D.3: Script for the calculation of the confidence intervals

Prediction Actual value CI (Upper) CI (Lower) σ2
t

-42.675 37.188 -31.019 -54.331 35.364

67.874 34.281 177.573 -41.825 55.97

-105.796 32.500 35.963 -247.555 72.327

165.372 37.500 334.021 -3.277 86.047

CI (Upper) = Upper confidence interval

CI (Lower) = Lower confidence interval

Both confidence intervals at 95 %

Table D.1: Confidence intervals
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Taylor series expansion

As explained in Gregg [2001], the Taylor series are a tool for calculating the

value of a function to an arbitrary level of precision (in a certain region). Briefly

said, with a Taylor series one can approximate every function f(x) by using the

following technique:

f [x] =
∞∑

n=0

an(x− a)n

an =
f (n)[a]

n!

(E.1)

where f (n) means the n-th derivative of the function f(x). Such a series is called

Taylor series centered at x = a. The accuracy of this approximation decreases

as x moves away from the initial a value. Therefore the optimal a value depends

on the region where the function is to be estimated.
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Confidence intervals

The confidence interval is the range, we expect the actual values (not the esti-

mated ones) to lie. The 95 % confidence interval, for example, is the range the

actual values will fall in with a probability of 95 %. The confidence intervals

are given by

µ + zσ and µ− zσ (F.1)

where z is the value of the inverse cumulative probability density function.

The inverse cumulative density function tells us, how many standard deviations

a value can maximally be away from the estimated value to within a certain

confidence interval.

Look at the figure F.1.

The green lines mark the area (this is the area between the green lines)

within which observations will lie with a probability of 95 %. The area outside

the green lines correspond to values, whose probability of occurrences is less than

5 % (the so-called tails). The inverse cumulative probability density function

(qnorm) gives us the Z number, i.e. the number of standard deviations a value

may lie away from the mean value to be within the 95 % confidence interval.

Since the probability density curve is symmetric and we are not interested in

deviations in a certain direction (i.e. the probability that a value is higher

or smaller), we have to take the two-tailed version and have to determine the

inverse cumulative probability for the 97,5 % value (that is because we have 5
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Figure F.1: Probability density and the confidence intervals

% tails on both sides, and only 2,5 % on each particular side).

In the case of the 95 % confidence interval we have a Z value of 1.96, ie the

boundaries of values lying within the 95 % probability region are

µ + 1.96σ and µ− 1.96σ (F.2)



Appendix G

Kolmogorov’s theorem

The information found in this section was taken from [Bishop, 1996, pp. 137–

141].

There is a theorem due to Kolmogorov (Kolmogorov [1957]) which, although

of no direct practical significance, does have an interesting relation to neural

networks. The theorem has its origins at the end of the nineteenth century

when the mathematician Hilbert compiled a list of 23 unsolved problems as a

challenge for twentieth century mathematicians (Hilbert [1900]). Hilbert’s thir-

teenth problem concerns the issue of whether functions of several variables can

be represented in terms of superpositions of functions of fewer variables. He con-

jectured that there exist continuous functions of three variables which cannot be

represented as superpositions of functions of two variables. The conjecture was

disproved by Arnold (Arnold [1957]). However, a much more general result was

obtained by Kolmogorov (Kolmogorov [1957]) who showed that every continu-

ous function of several variables (for a closed and bounded input domain) can

be represented as the superposition of a small number of functions of one vari-

able. Improved versions of Kolmogorov’s theorem have been given by Sprecher

(Sprecher [1965]), Kahane (Kahane [1975]) and Lorentz (Lorentz [1976]). In

neural network terms this theorem says that any continuous mapping y(x) from

d input variables xi to an output variable y can be represented exactly by a

three-layer neural network having d(2d + 1) units in the first hidden layer and
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(2d + 1) units in the second hidden layer.

Without saying, how to obtain the appropriate weights (thus of little prac-

tical significance), the theorem states that every function can theoretically be

approximated by a MLP with two second layers. So it is a well-founded counter-

argument to the work of Minsky and Paper (Minsky and Papert [1969]) since

it shows that multi-layer networks (contrary to single-layer networks addressed

by Minsky and Papert) are able to represent all functions very well. So Kol-

mogorov’s theorem (although developed in times where ANNs were not used

widely) contributed to promoting ANN related research to a high degree.



Appendix H

The O notation

TheO-notation is a theoretical measure of the execution of an algorithm, usually

the time or memory needed, given the problem size n, which is usually the

number of items. Informally, saying some equation

f(n) = O(g(n)) (H.1)

means f(n) is less than some constant multiple of g(n)(Black [2002]).

Formally, f(n) = O(g(n)) means there are positive constants c and k, such that

0 ≤ f(n) ≤ c× g(n) for all n ≥ k.

The values of c and k must be fixed for the function f and must not depend on

n (Black [2002]).

The importance of this measure can be seen in trying to decide whether an

algorithm is adequate, but may just need a better implementation, or the algo-

rithm will always be too slow on a big enough input. For instance, quicksort,

which is O(n log n) on average, running on a small desktop computer can beat

bubble sort, which is O(n2), running on a supercomputer if there are a lot of

numbers to sort. To sort 1,000,000 numbers, the quicksort takes 6,000,000 steps

on average, while the bubble sort takes 1,000,000,000,000 steps (Black [2002]).

Any measure of execution must implicitly or explicitly refer to some computa-

tion model. Usually this is some notion of the limiting factor. For one problem
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or machine, the number of floating point multiplications may be the limiting

factor, while for another, it may be the number of messages passed across a

network. Other measures which may be important are compares, item moves,

disk accesses, memory used, or elapsed (”wall clock”) time (Black [2002]).



Appendix I

Fisher’s discriminant

I.1 Derivation for 2-classes case

Fisher’s linear discriminant1 is a tool for reduction of dimensionality of the

input data while preserving as much of the class discriminatory information

as possible. This happens by projecting N d-dimensional samples x1, . . . , xN ,

which belong to classes C1, C2 onto a line

y = wT x (I.1)

such that the class separation is maximized. Consider figure I.1. In this simple

case there are two features (x1 and x2, d = 2), hence the projection results

in the reduction of dimensionality of the data. Using a good projection it is

possible to discriminate both classes with only one (y) instead of two (x1, x2)

features. In order to achieve a maximal class separation, a measure thereof must

be introduced. Theoretically, the difference between the mean values of classes

in the projection could be used for this purpose. Such a measure would be equal

to

µi =
1
Ni

∑

x∈Ci

x µ̃i =
1
Ni

∑

y∈Ci

y =
1
Ni

∑

x∈Ci

wT x = wT µi (I.2)

J(w) = |µ̃1 − µ̃2| = |wT (µ1 − µ2)| (I.3)

1The derivation of Fisher’s discriminant follows Gutierrez-Osuna [2001].
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a) b)

Figure I.1: Two projections of training samples onto a line. The samples indi-

cated by empty and filled circles belong to two different classes. The projection

b) yields a better class separation (discrimination) than a) (Gutierrez-Osuna

[2001]).

But the distance between projected means is not a good measure for class

separation since it does not take into account the standard deviation within the

classes (figure I.2). The solution proposed by Fisher is to maximize a function

that represents the difference between the means, normalized by a measure of

the within-class scatter. For each class, a scatter s̃2
i (equivalent of the variance)

is defined:

s̃2
i =

∑

y∈Ci

(y − µ̃i)2 (I.4)

The quantity s̃2
1 + s̃2

2 is called the within-class-scatter of the projected exam-

ples. The Fisher linear discriminant is defined as the linear function wT x that

maximizes the criterion function

J(w) =
|µ̃1 − µ̃2|2
s̃1 − s̃2

(I.5)

In other words, the desired projection is the one, where examples from the same

class are projected very close to each other and, at the same time, the projected

means are as farther apart as possible. In order to find w that maximizes J(w),

J(w) must be expressed as an explicit function of w. For this purpose, several
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Figure I.2: Projection on x2 axis yields a better class separation in spite of

the fact that separation on x1 axis would result in a larger distance between

means, since there is a bigger overlap between classes on the x1 axis (µ1 and

µ2 are means of classes C1 and C2) than on the x2 axis. The standard devia-

tion (ellipses) should be taken into account when deriving a measure for class

separability (Illustration from [Bishop, 1996, p. 107]).

new definitions are necessary:

Si =
∑

x∈Ci

(x− µi)(x− µi)T (I.6)

S1 + S2 = SW (I.7)

The within-class scatter matrix SW is proportional to the sample covariance

matrix. The scatter of the projection can be expressed as a function of the

scatter matrix:

s̃2
i =

∑

y∈Ci

(y − µ̃i)2 =
∑

x∈Ci

(wT x− wT µi)2 (I.8)

s̃2
i =

∑

x∈Ci

wT (x− µi)(x− µi)T w = wT Siw (I.9)

s̃2
1 + s̃2

2 = wT Sww (I.10)
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In the same way, the numerator in equation I.5 can be redefined as

(µ̃1 − µ̃2)2 = (wT µ1 − wT µ2)2 = wT (µ1 − µ2)(µ1 − µ2)T w = wT SBw (I.11)

SB = (µ1 − µ2)(µ1 − µ2)T (I.12)

⇒ (µ̃1 − µ̃2)2 = wT SBw (I.13)

SB is called the between-class scatter. Finally, Fisher criterion is defined in

terms of SW and SB as

J(w) =
wT SBw

wT Sww
(I.14)

In order to find the w∗ such that J(w) is maximized, the first derivation of J(w)

must be equated to zero:

d

dw
(J(w)) = 0 (I.15)

d

dw

(
wT SBw

wT SW w

)
= 0 (I.16)

(wT SBw)
dw (wT SW w)− (wT SW w)

dw (wT SBw)
(wT SW w)2

= 0 (I.17)

(wT SBw)
dw

(wT SW w)− (wT SW w)
dw

(wT SBw) = 0 (I.18)

2SBw(wT SW w)− 2SW w(wT SBw) = 0 (I.19)

SBw(wT SW w)− SW w(wT SBw) = 0 (I.20)

Dividing by (wT SW w) yields

SBw − SW w(wT SBw)
(wT SW w)

= 0 (I.21)

J(w) =
wT SBw

wT Sww
(I.22)

⇒ SBw − J(w)SW w = 0 (I.23)

SBw = J(w)SW w (I.24)

SB

SW
= J(w) (I.25)

The solution of the last expression yields

w∗ = argw max
(

wT SBw

wT SW w

)
= S−1

W SBw(µ1 − µ2) (I.26)
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This is known as Fisher’s Linear Discriminant (Fisher [1936]). Strictly speaking,

it is not a discriminant but rather a specific choice of direction for the projection

of the data down to one dimension.

I.2 Generalized version of Fisher’s discriminant

The equation I.26 applies to problems with 2 classes. The general version,

applicable to arbitrary numbers of classes will be given on following lines.

In this case, there is not 1, but (C − 1) discriminant functions, C being the

number of classes. The generalization of the within-class scatter matrix is

SW =
C∑

i=1

Si (I.27)

Si =
∑

x∈Ci

(x− µi)(x− µi)T µi =
1
Ni

∑

x∈Ci

x (I.28)

The generalization for the between-class scatter matrix is

SB =
C∑

i=1

Ni(µi − µ)(µi − µ)T (I.29)

µ =
1
N

N∑

n=1

xn =
1
N

C∑

k=1

Nkµk (I.30)

The matrix

ST = SB + SW (I.31)

is called the total scatter matrix.

The task of the ”generalized” Fisher’s discriminant is to find (C− 1) projection

vectors wi, which can be arranged by columns into a projection matrix W =

[w1|w2| . . . |wC−1] so that

yi = wT
i x ⇒ y = WT x (I.32)

The mean vector and scatter matrices for the projected samples are defined as

µ̃i =
1
Ni

∑

y∈Ci

y µ̃ =
1
N

N∑

n=1

yn (I.33)

S̃W =
C∑

i=1

∑

y∈Ci

(y − µ̃i)(y − µ̃i)T S̃B =
C∑

i=1

Ni(µ̃i − µ̃)(µ̃i − µ̃)T (I.34)
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From the derivation for the two-class problem, it can be shown that

S̃W = WT SW W S̃B = WT SBW (I.35)

”Generalized” Fisher’s criterion is defined similarly to the two-classes case:

J(W ) =
S̃B

S̃W

=
|WT SBW |
|WT SW W | (I.36)

The projection matrix, that maximizes J(W ) is called W ∗. It can be shown that

the optimal projection matrix W ∗ is the one whose columns are the eigenvectors2

corresponding to the largest eigenvalues3 of the following generalized eigenvalue

problem:

W ∗ = arg max
(

WT SBW

WT SW W

)
⇒ (SB − λiSW )w∗i = 0 (I.37)

2An eigenvector of a N × N matrix A is a nonzero vector x such that Ax = cx holds for

some scalar c (Herman [1996]).
3An eigenvalue of an N × N matrix A is a scalar c such that Ax = cx holds for some

nonzero vector x (Herman [1996]).
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